scispace - formally typeset
Search or ask a question
Topic

Acoustic emission

About: Acoustic emission is a research topic. Over the lifetime, 16293 publications have been published within this topic receiving 211456 citations.


Papers
More filters
Book
09 May 1997
TL;DR: In this paper, the authors investigated the effect of elastic twitching on the physical properties of Ferroelastic materials and found that the properties of these materials are influenced by the Reversible Plasticity of Superconductors under the action of Elastic Stresses.
Abstract: Partial Contents: 1. Transformation of Dislocations. Dislocation Description of a Phase Transformation Front. 2. Dislocation Theory of Elastic Twinning. Twinning of Crystals: Principal Definitions. 3. Statics and Dynamics of Elastic Twinning. Discovery of Elastic Twinning. Verification of the Validity of the Static Theory in a Description of the Macroscopic Behavior of an Elastic Twin. 4. Thermoelastic Martensitic Transformation. Martensitic Transformation: a Diffusionless Process of Rebuilding the Crystal Lattice. 5. Superelasticity and the Shape Memory Effect. Main Characteristics of Superelasticity and Shape Memory Effects. 6. Reversible Plasticity of Ferroelastics. Ferroelastics: Main Definitions. 7. Investigation of Reversible Plasticity of Crystals by the Acoustic Emission Method. Emission of Sound by Moving Dislocations andTheir Pileups. Methods Used in Experimental Investigations of the Acoustic Emission Generated by a SingleTwin. Acoustic Emission Associated with Elastic Twinning. 8. Influence of Reversible Plasticity of Superconductors on Their Physical Properties. Reversible Changes in the Parameters of Traditional Superconductors under the Action of Elastic Stresses.

69 citations

Journal ArticleDOI
TL;DR: In this article, a series of thin-wall cylinder tests were performed on Bentheim sandstone to investigate the nucleation and propagation of borehole breakouts, and a simple fracture mechanics approach was applied to predict the observed size effect of the critical pressure required to initiate breakouts.

69 citations

Journal ArticleDOI
TL;DR: In this paper, the ability of volumic ultrasonic wave propagation and acoustic emission to detect and identify localised damage in glass epoxy composites under hydrothermal ageing was investigated.
Abstract: Applications of reinforced composites and heterogeneous solids are widespread, spanning technological areas of various aerospace and mechanical industries. A real challenge concerning these materials is their life time prediction when subjected to wide variety of environmental and mechanical loading conditions that can initiate damage and lead to failure. Indeed, damage at the smallest scales drives damage accumulation at larger length scales until some critical local damage state is attained that causes macroscopic failure. A key issue in predicting life time is to characterise distributed volumic and localised damage and to understand the mechanisms of its initiation, evolution and criticality and so, the identification of relevant precursors of failure. To answer to these questions, volumic and guided ultrasonic waves and acoustic emission are of particular interest. As a matter of fact volumic ultrasonic wave propagation is sensitive to homogeneously distributed microcracks and represents in that case a good damage indicator. Guided waves as Lamb waves especially when generated from inside the material using an inserted piezoelectric element offer a specific sensitivity to localised damage as cracks or delaminations. Besides, acoustic emission which corresponds to the energy released by the material during the damage processes is directly related to the damage mechanisms and so can give pertinent information about the damage initiation and development. In this paper, our aim is to show in the one hand the ability of volumic ultrasonic waves to characterise volumic damage of glass epoxy composites under hydrothermal ageing and also the ability of Lamb waves to detect and identify localised damage. In the other hand our purpose is to demonstrate the potentiality of acoustic emission in understanding the damage mechanisms that occurs during a tensile test of polymer fibre composites and to discriminate in real time the different types of damage occurring at the microscopic scale.

69 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated edge delamination onset on composite laminate for a carbon/epoxy G947/M18 composite material, making use of a conventional model assuming plies homogeneity, damageable elastic behaviour, plane interlaminar surface also infinite interfacial stiffness and a local stress tensor correction near the edge.

69 citations

Journal ArticleDOI
TL;DR: In this article, Acoustic emission (AE) signals were analyzed to identify the classes of reinforced concrete (RC) beam corresponding to a specific crack mode and the relationship between average frequency and RA value indicated clear trend with respect to crack classifications.

69 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Finite element method
178.6K papers, 3M citations
83% related
Microstructure
148.6K papers, 2.2M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023701
20221,350
2021832
2020841
2019918
2018763