scispace - formally typeset
Search or ask a question
Topic

Acoustic emission

About: Acoustic emission is a research topic. Over the lifetime, 16293 publications have been published within this topic receiving 211456 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used acoustic emission doublets (AE doublets) in the triaxial hodogram method to evaluate the direction and distance of subsurface extension cracks.
Abstract: We have developed a precise relative source location technique using acoustic emission doublets (AE doublets) in the triaxial hodogram method to evaluate the direction and distance of subsurface extension cracks. An AE doublet is a pair of acoustic emissions with similar waveforms and adjacent locations on the same crack but which occur at different times. The relative source location is estimated by an analysis in the frequency domain. The relative distance between two AE sources is determined from the difference of P-S arrival time delays by cross-spectrum analysis. The relative direction is derived using a spectral matrix from the difference in P-wave polarization directions. We also propose a method to optimize the estimated relative location by using a group of AE doublets. The accuracy of the estimated source location was confirmed by performing field experiments. The relative locations of artificial wave sources about 150 m from a triaxial detector can be estimated with distance errors of less than 1 m, and direction errors of less than 3.8 degrees in both azimuth and inclination. Results of the application of this analysis on AE doublets in a geothermal field demonstrate its ability to evaluate deeper subsurface fractures.

67 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the acoustic emission behaviors and source mechanisms during fatigue crack propagation in the base metal and weld of Q345 steel and found that acoustic emission was more sensitive to the changes in the fracture mode and could be used to monitor the fatigue damage developed in structures.
Abstract: The acoustic emission (AE) behaviors and source mechanisms during fatigue crack propagation in the base metal and weld of Q345 steel were investigated in this study. The fatigue properties and acoustic emission characteristics were analyzed based on the micro-structural and fractographic observations. The source mechanisms of acoustic emission for the three stages during fatigue were proposed, which were crack initiation, plastic activities ahead of the crack tip, and shearing of ligaments between micro-voids and micro-cracks respectively. The effects of the micro-structure and peak load on acoustic emission during fatigue crack propagation were also discussed in this study. The results showed that the acoustic emission was more sensitive to the changes in the fracture mode and could be used to monitor the fatigue damage developed in structures.

67 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used acoustic emission (AE) and scanning electron microscopy (SEM) to study how the crack dip angle affected the fracture mechanism in coal mine precracked sandstone samples.
Abstract: Sandstone samples with precracks of different dip angles were collected from a coal mine roof and subjected to uniaxial compression tests, and acoustic emission (AE) and scanning electron microscopy (SEM) were used to study how the crack dip angle affected the fracture mechanism. In the precracked sandstone samples, as the dip angle between the crack line and loading direction decreased, so did the peak stress and its completion time. The SEM observations revealed a fracture transition from tensile cleavage to shear slip, which was manifested by a microstructure change from aggregate to staggered. According to energy conversion, a decreased crack dip angle results in gradually decreasing total and dissipative peak energies, whose variation amplitudes at different stages are consistent with those of the peak stress of the samples. The decreased crack dip angle lowered the stress required to trigger the first appearance of AE energy peaks and ring-down counts, as well as shortening the period before the occurrence of the first AE peak signal. However, the AE energy and ring-down count during the failure stage after the stress peak increased gradually. A stepped increase was observed in the AE ring-down count curves, with each step corresponding to a jump in the stress-strain curve. From the characteristics of the AE signal of the fracture of a precracked rock sample, the occurrence of joints or faults in the rock mass can be reasonably inferred. This is expected to provide a new method and approach for predicting coal and rock dynamic disasters.

67 citations

Journal ArticleDOI
TL;DR: In this article, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures, and the results showed that the peak strength and Young's modulus of pre-fissured specimens all decreased and then increased when the fissure angle increased from 0 to 75 degrees.
Abstract: Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures. In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen. Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servo-controlled testing system. The peak strength and Young’s modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from $$0^{\circ }$$ to $$75^{\circ }$$ . In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process. Moreover, acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristic of pre-fissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, the corresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously. Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures. In the present study, two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding of the model specimens, which were fabricated by cement, sand, and water. All specimens were tested under uniaxial compression. Photographic monitoring was adopted to capture images during the entire deformation to investigate the crack initiation, propagation, and coalescence process. Moreover, the acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristics. Finally, the mechanism of crack propagation under microscopic observation was discussed. Fig: AE counts and crack evolution process of rock-like material specimen containing two unparallel fissures for $$\alpha = 30^{\circ }$$

67 citations

Journal ArticleDOI
TL;DR: In this article, a new measurement system named Continuous Wave Memory (CWM) was developed to solve this problem by recording the acoustic emission (AE) waveforms continuously to hard disks for several hours throughout the testing time.
Abstract: Waveforms of acoustic emission (AE) events come close and sometimes overlap each other when AE activity is very high. Conventional AE measurement systems which handle discrete AE events are not suitable for this situation because miss-detection of AE event occurs frequently. A new AE measurement system named as Continuous Wave Memory (CWM) was developed to solve this problem by recording the AE waveforms continuously to hard disks for several hours throughout the testing time. This new system enabled multiple analysis of one waveform with different filtering parameters. Short time Fourier transform (STFT) gave the time-frequency-magnitude characteristic of continuous AE waveforms and useful information for evaluation of degradation of materials. In this study, the degradation of ceramic fiber mat during cyclic compression test and the effect of binder-addition were evaluated by this new system. STFT results clearly showed the classification of degradation of the mat; breakage of fibers was the main source in the early compression cycles and sporadic friction between fibers became the main source of AE in the later compression cycles. The effect of organic binder to prevent the degradation of the mat was also estimated. It was observed that the friction signal disappeared and the breakage signal weakened in the binder-added specimens.

67 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Finite element method
178.6K papers, 3M citations
83% related
Microstructure
148.6K papers, 2.2M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023701
20221,350
2021832
2020841
2019918
2018763