scispace - formally typeset
Search or ask a question
Topic

Acoustic emission

About: Acoustic emission is a research topic. Over the lifetime, 16293 publications have been published within this topic receiving 211456 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A methodology for rotational machine health monitoring and fault detection using empirical mode decomposition (EMD)-based AE feature quantification is presented and incorporates a threshold-based denoising technique into EMD to increase the signal-to-noise ratio of the AE bursts.
Abstract: Acoustic emission (AE)-signal-based techniques have recently been attracting researchers' attention to rotational machine health monitoring and diagnostics due to the advantages of the AE signals over the extensively used vibration signals. Unlike vibration-based methods, the AE-based techniques are in their infant stage of development. From the perspective of machine health monitoring and fault detection, developing an AE-based methodology is important. In this paper, a methodology for rotational machine health monitoring and fault detection using empirical mode decomposition (EMD)-based AE feature quantification is presented. The methodology incorporates a threshold-based denoising technique into EMD to increase the signal-to-noise ratio of the AE bursts. Multiple features are extracted from the denoised signals and then fused into a single compressed AE feature. The compressed AE features are then used for fault detection based on a statistical method. A gear fault detection case study is conducted on a notional split-torque gearbox using AE signals to demonstrate the effectiveness of the methodology. A fault detection performance comparison using the compressed AE features with the existing EMD-based AE features reported in the literature is also conducted.

177 citations

Journal ArticleDOI
TL;DR: In this article, the authors adopted the acoustic emission technique to study the failure mechanisms and damage evolution of carbon fiber/epoxy composite laminates, and studied the effects of different lay-up patterns and hole sizes on the acoustic response.

177 citations

Journal ArticleDOI
Jin-Seop Kim1, Kyung-Soo Lee1, Won-Jin Cho1, Heui-Joo Choi1, Gye-Chun Cho2 
TL;DR: In this paper, the authors identify the crack initiation and damage stress thresholds of granite from the Korea atomic energy research institute's underground research tunnel (KURT) from uniaxial compression tests, during which both the stress-strain and AE activity were recorded simultaneously.
Abstract: The purpose of this study is to identify the crack initiation and damage stress thresholds of granite from the Korea atomic energy research institute’s Underground Research Tunnel (KURT). From this, a quantitative damage evolution was inferred using various methods, including the crack volumetric strain, b value, the damage parameter from the moment tensor, and the acoustic emission (AE) energy. Uniaxial compression tests were conducted, during which both the stress–strain and AE activity were recorded simultaneously. The crack initiation threshold was found at a stress level of 0.42–0.53 σc, and the crack damage threshold was identified at 0.62–0.84 σc. The normalized integrity of KURT granite was inferred at each stress level from the damage parameter by assuming that the damage is accumulated beyond the crack initiation stress threshold. The maximum deviation between the crack volumetric strain and the AE method was 16.0 %, which was noted at a stress level of 0.84 σc. The damage parameters of KURT granite derived from a mechanically measured stress–strain relationship (crack volumetric strain) were successfully related and compared to those derived from physically detected acoustic emission waves. From a comprehensive comparison of damage identification and quantification methods, it was finally suggested that damage estimations using the AE energy method are preferred from the perspectives of practical field applicability and the reliability of the obtained damage values.

176 citations

Journal ArticleDOI
TL;DR: A comprehensive review on the use of acoustic emission (AE) for damage characterization in laminated composites is presented in this paper, where the authors discuss the literature for damage diagnostics and damage type identification and damage localization.
Abstract: Damage characterization of laminated composites has been thoroughly studied the last decades where researchers developed several damage models, and in combination with experimental evidence, contributed to better understanding of the structural behavior of these structures. Experimental techniques played an essential role on this progress and among the techniques that were utilized, acoustic emission (AE) was extensively used due to its advantages for in-situ damage monitoring with high sensitivity and its capability to inspect continuously a relatively large area. This paper presents a comprehensive review on the use of AE for damage characterization in laminated composites. The review is divided into two sections; the first section discusses the literature for damage diagnostics and it is presented in three subsections: damage initiation detection, damage type identification and damage localization, while the second section is devoted to damage prognostics and it focuses on the remaining useful life (RUL) and residual strength prediction of composite structures using AE data. In every section, efforts have been made to analyze the most relevant literature, discuss in a critical manner the results and conclusions, and identify possibilities for future work.

175 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a new in situ Structural Health Monitoring (SHM) system able to identify the location of acoustic emission (AE) sources due to low-velocity impacts and to determine the group velocity in complex composite structures with unknown lay-up and thickness.
Abstract: This paper presents a new in situ Structural Health Monitoring (SHM) system able to identify the location of acoustic emission (AE) sources due to low-velocity impacts and to determine the group velocity in complex composite structures with unknown lay-up and thickness. The proposed algorithm is based on the differences of stress waves measured by six piezoelectric sensors surface bonded. The magnitude of the Continuous Wavelet Transform (CWT) squared modulus was employed for the identification of the time of arrivals (TOA) of the flexural Lamb mode ( A 0 ). Then, the coordinates of the impact location and the flexural wave velocity were obtained by solving a set of non-linear equations through a combination of global Line Search and backtracking techniques associated to a local Newton’s iterative method. To validate this algorithm, experimental tests were conducted on two different composite structures, a quasi-isotropic CFRP and a sandwich panel. The results showed that the impact source location and the group speed were predicted with reasonable accuracy (maximum error in estimation of the impact location was approximately 2% for quasi-isotropic CFRP panel and nearly 1% for sandwich plate), requiring little computational time (less than 2 s).

175 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Finite element method
178.6K papers, 3M citations
83% related
Microstructure
148.6K papers, 2.2M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023701
20221,350
2021832
2020841
2019918
2018763