scispace - formally typeset
Search or ask a question
Topic

Acoustic emission

About: Acoustic emission is a research topic. Over the lifetime, 16293 publications have been published within this topic receiving 211456 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report simultaneous laboratory measurements of seismic velocities and fluid permeability on lava flow basalt from Etna (Italy) using an effective medium model.

134 citations

Journal ArticleDOI
30 Nov 1997-Wear
TL;DR: In this article, an attemopt is made to extract maximum information from acoustic emission (AE) signals acquired during machining, and a statistical method, the time series modelling technique, is used to extract parameters called features representing the state of the cutting process.

133 citations

Journal ArticleDOI
TL;DR: In this article, a combination of unconstrained optimization technique associated with a local Newton's iterative method was employed to solve a set of nonlinear equations in order to assess the impact location coordinates and the wave speed.
Abstract: This paper investigates the development of an in situ impact detection monitoring system able to identify in real-time the acoustic emission location. The proposed algorithm is based on the differences of stress waves measured by surface-bonded piezoelectric transducers. A joint time-frequency analysis based on the magnitude of the continuous wavelet transform was used to determine the time of arrival of the wavepackets. A combination of unconstrained optimization technique associated with a local Newton's iterative method was employed to solve a set of nonlinear equations in order to assess the impact location coordinates and the wave speed. With the proposed approach, the drawbacks of a triangulation method in terms of estimating a priori the group velocity and the need to find the best time-frequency technique for the time-of-arrival determination were overcome. Moreover, this algorithm proved to be very robust since it was able to converge from almost any guess point and required little computational time. A comparison between the theoretical and experimental results carried out with piezoelectric film (PVDF) and acoustic emission transducers showed that the impact source location and the wave velocity were predicted with reasonable accuracy. In particular, the maximum error in estimation of the impact location was less than 2% and about 1% for the flexural wave velocity.

133 citations

Journal ArticleDOI
TL;DR: In this paper, three different laboratory axisymmetric compression experiments were performed on Bleurswiller sandstone, which enable us to compare the acoustic emission signature of these three modes of deformation.
Abstract: In some reservoirs, large deformations can occur during oil or gas production because of the effective stress change. For very porous rocks, these production operations can be sufficient to cause inelastic deformation and irreversible damage. Rock formations can undergo deformation by different mechanisms, including dilatancy or pore collapse. In the laboratory, it has been shown that the inelastic deformation and failure mode of porous rocks are pressure sensitive. Indeed, when subjected to an overall compressive loading, a porous rock may fail by shear localization, compaction localization, or by cataclastic compaction. Acoustic emission (AE) records provide important information to understand the failure mode of rocks: the spatial evolution of damage as well as the source mechanisms can be followed using this technique. In this paper, we present three different laboratory axisymmetric compression experiments, performed on Bleurswiller sandstone, which enable us to compare the acoustic emission signature of these three modes of deformation. Our data show that compaction localization and cataclastic compaction are characterized by similar acoustic signatures (in terms of AE sources characteristics and evolution of AE number), in comparison to the acoustic signature from shear localization. This implies similar micromechanisms involved during compaction bands formation and cataclastic compaction.

132 citations

Journal ArticleDOI
TL;DR: In this article, a rational constitutive model to describe the material's nonlinearity and strain-softening behavior has been developed to improve the quality of a material's quality.
Abstract: It is necessary to study the microlevel failure mechanisms of a material in order to improve its quality and to develop a rational constitutive model to describe the material. Nonlinearity and strain-softening behavior of concrete has to be incorporated into any model which can be implemented into efficient design. Acoustic-emission (AE) techniques are useful for obtaining information pertaining to internal cracking and investigating the applicability of a particular material model.

132 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Finite element method
178.6K papers, 3M citations
83% related
Microstructure
148.6K papers, 2.2M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023701
20221,350
2021832
2020841
2019918
2018763