scispace - formally typeset
Search or ask a question
Topic

Activated alumina

About: Activated alumina is a research topic. Over the lifetime, 1430 publications have been published within this topic receiving 31090 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used response surface methodology (RSM) based on central composite design (CCD) with two variables, the temperature and pressure in the range of (20-80°C) and (2-10

43 citations

Journal ArticleDOI
TL;DR: A single-stage batch adsorber was designed for the removal of Cd2+ ions by MANC based on the equilibrium data obtained, and it was found to follow closely the pseudo-second-order model.
Abstract: Magnetic alumina nano composite (MANC) was prepared for combination of the adsorption features of nano activated alumina with the magnetic properties of iron oxides to produce a nano magnetic adsorbent, which can be separated from the medium by a simple magnetic process after adsorption. MANC was characterized using XRD, SEM, TEM, EDX and surface area (BET). Quantum design SQUID magnetometer was used to study the magnetic measurement. The present study was conducted to evaluate the feasibility of MANC for the removal of cadmium ions from aqueous solutions through batch adsorption technique. The effects of pH, adsorbent dose, temperature, contact time and initial Cd2+ concentration on cadmium ions adsorption were studied. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms. The equilibrium data were best represented by the Langmuir isotherm. The kinetic data were fitted to pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models, and it was found to follow closely the pseudo-second-order model. Thermodynamic parameters were calculated for the Cd2+ ion-MANC system and the positive value of ΔH° showed that the adsorption was endothermic in nature. Furthermore, a single-stage batch adsorber was designed for the removal of Cd2+ ions by MANC based on the equilibrium data obtained.

43 citations

Patent
26 Feb 1980
TL;DR: Aqueous suspensions of alumina particulates, at least a portion of which comprising ultrafine boehmite, are prepared by maintaining a pH < 9 aqueous formulation of poorly crystallized and/or amorphous activated alumina powder for such period of time as to effect the at least partial transformation of such powder into ultrafine Boehmite.
Abstract: Aqueous suspensions of alumina particulates, at least a portion of which comprising ultrafine boehmite, are prepared by maintaining a pH<9 aqueous formulation of poorly crystallized and/or amorphous activated alumina powder for such period of time as to effect the at least partial transformation of such alumina powder into ultrafine boehmite.

43 citations

Journal ArticleDOI
TL;DR: In this paper, an improved method for the synthesis of 2,3-unsaturated-O-glycosides has been developed, using ZnCl2 impregnated on activated alumina.

42 citations

Journal ArticleDOI
TL;DR: Nanomeso porous γ-alumina with a high surface area and small particle size was prepared from inexpensive kaolin as the raw material and showed that adsorbent has the high adsorption capacity (for initial arsenite concentration up to 10 mg/L, in which 97.65% recovery was achieved).
Abstract: Adsorption is considered a cost-effective procedure, safer to handle with high removal efficiency. Activated alumina is the most commonly used adsorbent for the removal of arsenic from aqueous solutions. However, activated alumina has a low adsorption capacity and acts kinetically in a slow manner. An ideal adsorbent should have a high surface area, physical and/or chemical stability and be inexpensive. To meet this requirement, nanomeso porous γ-alumina with a high surface area (201.53 m2/g) and small particle size (22–36 nm) was prepared from inexpensive kaolin as the raw material, by precipitation method. The research results showed that adsorbent has the high adsorption capacity (for initial arsenite concentration up to 10 mg/L, in which 97.65% recovery was achieved). Optimal experimental conditions including pH, initial arsenite concentration and contact time were determined. Langmuir, Freundlich and Dubinin– Radushkevich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by Langmuir adsorption isotherm equation and the maximum arsenite adsorbed by synthesized nano γ–alumina (qe) was found to be 40 (mg/g).

42 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
81% related
Freundlich equation
27.6K papers, 941.4K citations
77% related
Water quality
67.1K papers, 945.1K citations
76% related
Sorption
45.8K papers, 1.3M citations
75% related
Adsorption
226.4K papers, 5.9M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202218
202118
202031
201941
201839