scispace - formally typeset
Search or ask a question
Topic

Active shape model

About: Active shape model is a research topic. Over the lifetime, 4067 publications have been published within this topic receiving 160957 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work uses snakes for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest, and uses scale-space continuation to enlarge the capture region surrounding a feature.
Abstract: A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.

18,095 citations

Journal ArticleDOI
TL;DR: This work describes a method for building models by learning patterns of variability from a training set of correctly annotated images that can be used for image search in an iterative refinement algorithm analogous to that employed by Active Contour Models (Snakes).

7,969 citations

Journal ArticleDOI
Abstract: We describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations in the model parameters and the induced image errors.

6,200 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: This work proposes to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network, and shows that this 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.
Abstract: 3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representation automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet - a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.

4,266 citations

Book ChapterDOI
02 Jun 1998
TL;DR: A novel method of interpreting images using an Active Appearance Model (AAM), a statistical model of the shape and grey-level appearance of the object of interest which can generalise to almost any valid example.
Abstract: We demonstrate a novel method of interpreting images using an Active Appearance Model (AAM). An AAM contains a statistical model of the shape and grey-level appearance of the object of interest which can generalise to almost any valid example. During a training phase we learn the relationship between model parameter displacements and the residual errors induced between a training image and a synthesised model example. To match to an image we measure the current residuals and use the model to predict changes to the current parameters, leading to a better fit. A good overall match is obtained in a few iterations, even from poor starting estimates. We describe the technique in detail and give results of quantitative performance tests. We anticipate that the AAM algorithm will be an important method for locating deformable objects in many applications.

3,905 citations


Network Information
Related Topics (5)
Image segmentation
79.6K papers, 1.8M citations
91% related
Feature (computer vision)
128.2K papers, 1.7M citations
91% related
Convolutional neural network
74.7K papers, 2M citations
88% related
Feature extraction
111.8K papers, 2.1M citations
88% related
Image processing
229.9K papers, 3.5M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202224
202124
202019
201927
201857