scispace - formally typeset
Search or ask a question
Topic

Active vibration control

About: Active vibration control is a research topic. Over the lifetime, 6770 publications have been published within this topic receiving 76599 citations. The topic is also known as: active vibration damping.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the use of shunted piezoelectric materials for vibration damping and control, including four basic kinds of shunt circuits: resistive, inductive, capacitive, and switched.
Abstract: Research on shunted piezoelectric materials, conducted mainly over the past decade, provides new options to engineers who are responsible for solving structural vibration control problems. The general method is made possible by the relatively strong electromechanical coupling exhibited by modern piezoelectric materials. If a piezoelectric element is attached to a structure, it is strained as the structure deforms and converts a portion of the energy associated with vibration into electrical energy. The piezoelectric element (which behaves electrically as a capacitor), in combination with a network of electrical elements connected to it (a shunt network), comprises an electrical system that can be configured to accomplish vibration control through its treatment of electrical energy. Four basic kinds of shunt circuits are typically used: resistive, inductive, capacitive, and switched. Each of these kinds of shunts results in characteristically different dynamic behavior: a resistive shunt dissipates energy through Joule heating, which has the effect of structural damping. An inductive shunt results in a resonant LC circuit, the behavior of which is analogous to that of a mechanical vibration absorber (tuned mass damper). A capacitive shunt changes the effective stiffness of the piezoelectric element, which can be used to advantage in, for example, a tunable mechanical vibration absorber. A switched shunt offers the possibilities of controlling the energy transfer to reduce frequency-dependent behavior, or perhaps the conversion of energy to a usable form. This paper reviews recent research related to the use of shunted piezoelectric materials for vibration damping and control.

244 citations

Book
01 Jan 1996
TL;DR: Nelson and Elliott as mentioned in this paper summarized the principles underlying active vibration control and its practical applications by combining material from vibrations, mechanics, signal processing, acoustics, and control theory, and the reader will find particularly interesting the two chapters on the active control of sound radiation from structures: active structural acoustic control.
Abstract: This book is a companion text to Active Control of Sound by P.A. Nelson and S.J. Elliott, also published by Academic Press. It summarizes the principles underlying active vibration control and its practical applications by combining material from vibrations, mechanics, signal processing, acoustics, and control theory. The emphasis of the book is on the active control of waves in structures, the active isolation of vibrations, the use of distributed strain actuators and sensors, and the active control of structurally radiated sound. The feedforward control of deterministic disturbances, the active control of structural waves and the active isolation of vibrations are covered in detail, as well as the more conventional work on modal feedback. The principles of the transducers used as actuateors and sensors for such control strategies are also given an in-depth description. The reader will find particularly interesting the two chapters on the active control of sound radiation from structures: active structural acoustic control. The reason for controlling high frequency vibration is often to prevent sound radiation, and the principles and practical application of such techniques are presented here for both plates and cylinders. The volume is written in textbook style and is aimed at students, practicing engineers, and researchers.

234 citations

Journal ArticleDOI
TL;DR: In this article, a general description of smart material systems is given, focusing on the following fields of application: semi-passive concepts, energy harvesting, semi-active concepts, active vibration control and active structural acoustic control.

233 citations

Journal ArticleDOI
TL;DR: In this paper, a finite element formulation is presented for modeling the behavior of laminated composites with integrated piezoelectric sensors and actuators, which is applicable for both thin and moderately thick plates.
Abstract: A finite element formulation is presented for modeling the behavior of laminated composites with integrated piezoelectric sensors and actuators. This model is valid for both con tinuous and segmented piezoelectric elements that can be either surface bonded or embedded in the laminated plate. The present model takes into account the mass and the stiffness of the piezoelectric patches. The formulation is based on the first-order shear deformation theory, which is applicable for both thin and moderately thick plates. An additional feature of the present model is that it does not introduce the voltage as an additional degree of freedom. The charge/current generated by the sensor and the response of the plate to an actuator voltage can be computed independently. These features are then coupled with a constant-gain negative-velocity/positive-position feedback control algorithm to actively control the transient response of the plate in a closed loop. Numerical results are presented which indicate the increase in...

229 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an approach to the simultaneous optimal design of a structure and control system for large flexible spacecrafts based on realistic objective function and constraints, where the weight or total cost of the structure and the control system is minimized subject to constraints on the magnitude of response to a given disturbance involving both rigid-body and elastic modes.
Abstract: This paper presents an approach to the simultaneous optimal design of a structure and control system for large flexible spacecrafts based on realistic objective function and constraints The weight or total cost of structure and control system is minimized subject to constraints on the magnitude of response to a given disturbance involving both rigid-body and elastic modes A nested optimization technique is developed to solve the combined problem As an example, simple beam-like spacecraft under a steady-state white-noise disturbance force is investigated and some results of optimization are presented In the numerical examples, the stiffness distribution, location of controller, and control gains are optimized Direct feedback control and linear quadratic optimal controls laws are used with both inertial and noninertial disturbing force It is shown that the total cost is sensitive to the overall structural stiffness, so that simultaneous optimization of the structure and control system is indeed useful

228 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
82% related
Finite element method
178.6K papers, 3M citations
80% related
Control system
129K papers, 1.5M citations
80% related
Optimal control
68K papers, 1.2M citations
80% related
Robustness (computer science)
94.7K papers, 1.6M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202363
2022106
2021131
2020118
2019157
2018185