scispace - formally typeset
Search or ask a question
Topic

Actuator

About: Actuator is a research topic. Over the lifetime, 66219 publications have been published within this topic receiving 689957 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a scaling analysis is performed to demonstrate that the effectiveness of actuators is independent of the size of the structure and evaluate various piezoelectric materials based on their effectiveness in transmitting strain to the substructure.
Abstract: This work presents the analytic and experimental development of piezoelectric actuators as elements of intelligent structures, i.e., structures with highly distributed actuators, sensors, and processing networks. Static and dynamic analytic models are derived for segmented piezoelectric actuators that are either bonded to an elastic substructure or embedded in a laminated composite. These models lead to the ability to predict, a priori, the response of the structural member to a command voltage applied to the piezoelectric and give guidance as to the optimal location for actuator placement. A scaling analysis is performed to demonstrate that the effectiveness of piezoelectric actuators is independent of the size of the structure and to evaluate various piezoelectric materials based on their effectiveness in transmitting strain to the substructure. Three test specimens of cantilevered beams were constructed: an aluminum beam with surface-bonded actuators, a glass/epoxy beam with embedded actuators, and a graphite/epoxy beam with embedded actuators. The actuators were used to excite steady-state resonant vibrations in the cantilevered beams. The response of the specimens compared well with those predicted by the analytic models. Static tensile tests performed on glass/epoxy laminates indicated that the embedded actuator reduced the ultimate strength of the laminate by 20%, while not significantly affecting the global elastic modulus of the specimen.

2,719 citations

Proceedings ArticleDOI
05 Aug 1995
TL;DR: It is proposed that for natural tasks, zero motion force bandwidth isn't everything, and incorporating series elasticity as a purposeful element within the actuator is a good idea.
Abstract: It is traditional to make the interface between an actuator and its load as stiff as possible. Despite this tradition, reducing interface stiffness offers a number of advantages, including greater shock tolerance, lower reflected inertia, more accurate and stable force control, less inadvertent damage to the environment, and the capacity for energy storage. As a trade-off, reducing interface stiffness also lowers zero motion force bandwidth. In this paper, the authors propose that for natural tasks, zero motion force bandwidth isn't everything, and incorporating series elasticity as a purposeful element within the actuator is a good idea. The authors use the term elasticity instead of compliance to indicate the presence of a passive mechanical spring in the actuator. After a discussion of the trade-offs inherent in series elastic actuators, the authors present a control system for their use under general force or impedance control. The authors conclude with test results from a revolute series-elastic actuator meant for the arms of the MIT humanoid robot Cog and for a small planetary rover.

2,309 citations

Book
01 Nov 1990
TL;DR: An introduction to martensite and shape memory, CMWayman and TWDuerig shape memory and transformation behavior of mariensitic Ti-Pd-Ni andTi-Pt-Ni alloys, PGLindquit and CMMayman the mechanical aspects of constrained recovery, JLProft and TWduerig the design of electrical interconnection systems with shape memory alloys as mentioned in this paper, ECydzik actuator and work production devices.
Abstract: An introduction to martensite and shape memory, CMWayman and TWDuerig shape memory and transformation behavior of mariensitic Ti-Pd-Ni and Ti-Pt-Ni alloys, PGLindquit and CMWayman the mechanical aspects of constrained recovery, JLProft and TWDuerig the design of electrical interconnection systems with shape memory alloys, ECydzik actuator and work production devices, AKeeley, DStockel and TWDuerig fatique of copper-based shape memory alloys, EHornbogen shape memory actuators for automotive applications, DStockel using shape memory for proportional control, DEHodgson an engineer's perspective of pseudoelasticity, TWDuerig and GRZadno the use of superelasticity in guidewires and arthroscopic instrumentation, JStice some notes on the mechanical damping of shape memory alloys, MWuttig

1,560 citations

Journal ArticleDOI
TL;DR: In this article, an active vibration damper for a cantilever beam was designed using a distributed-parameter actuator and distributedparameter control theory, and preliminary testing of the damper was performed on the first mode of the beam.
Abstract: An active vibration damper for a cantilever beam was designed using a distributed-parameter actuator and distributed-parameter control theory. The distributed-parameter actuator was a piezoelectric polymer, poly (vinylidene fluoride). Lyapunov's second method for distributed-parameter systems was used to design a control algorithm for the damper. If the angular velocity of the tip of the beam is known, all modes of the beam can be controlled simultaneously. Preliminary testing of the damper was performed on the first mode of the cantilever beam. A linear constant-gain controller and a nonlinear constant-amplitude controller were compared. The baseline loss factor of the first mode was 0.003 for large-amplitude vibrations (± 2 cm tip displacement) decreasing to 0.001 for small vibrations (±0.5 mm tip displacement). The constant-gain controller provided more than a factor of two increase in the modal damping with a feedback voltage limit of 200 V rms. With the same voltage limit, the constant-amplitude controller achieved the same damping as the constant-gain controller for large vibrations, but increased the modal loss factor by more than an order of magnitude to at least 0.040 for small vibration levels.

1,408 citations

Journal ArticleDOI
TL;DR: An ambient-driven actuator that takes advantage of inherent nanoscale molecular channels within a commercial perfluorosulfonic acid ionomer (PFSA) film, fabricated by simple solution processing to realize a rapid response, self-adaptive, and exceptionally stable actuation.
Abstract: The ability to achieve simultaneous intrinsic deformation with fast response in commercially available materials that can safely contact skin continues to be an unresolved challenge for artificial actuating materials. Rather than using a microporous structure, here we show an ambient-driven actuator that takes advantage of inherent nanoscale molecular channels within a commercial perfluorosulfonic acid ionomer (PFSA) film, fabricated by simple solution processing to realize a rapid response, self-adaptive, and exceptionally stable actuation. Selective patterning of PFSA films on an inert soft substrate (polyethylene terephthalate film) facilitates the formation of a range of different geometries, including a 2D (two-dimensional) roll or 3D (three-dimensional) helical structure in response to vapor stimuli. Chemical modification of the surface allowed the development of a kirigami-inspired single-layer actuator for personal humidity and heat management through macroscale geometric design features, to afford a bilayer stimuli-responsive actuator with multicolor switching capability. Intrinsic deformation with fast response in commercially available materials that can safely contact skin continues to be a challenge for artificial actuating materials. Here the authors incorporate nanoscale molecular channels within perfluorosulfonic acid ionomer for self-adaptive and ambient-driven actuation.

1,395 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
91% related
Control system
129K papers, 1.5M citations
89% related
Robustness (computer science)
94.7K papers, 1.6M citations
87% related
Linear system
59.5K papers, 1.4M citations
85% related
Nonlinear system
208.1K papers, 4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,830
20225,900
20211,805
20202,611
20192,906
20182,706