scispace - formally typeset
Search or ask a question

Showing papers on "Acyl-CoA published in 2011"


Journal ArticleDOI
TL;DR: A novel bacterial enzyme from Marinobacter aquaeolei VT8 is identified, purify, and characterize that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase.
Abstract: Fatty alcohols are of interest as a renewable feedstock to replace petroleum compounds used as fuels, in cosmetics, and in pharmaceuticals. One biological approach to the production of fatty alcohols involves the sequential action of two bacterial enzymes: (i) reduction of a fatty acyl-CoA to the corresponding fatty aldehyde catalyzed by a fatty acyl-CoA reductase, followed by (ii) reduction of the fatty aldehyde to the corresponding fatty alcohol catalyzed by a fatty aldehyde reductase. Here, we identify, purify, and characterize a novel bacterial enzyme from Marinobacter aquaeolei VT8 that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase. The enzyme is shown to reduce fatty acyl-CoAs ranging from C8:0 to C20:4 to the corresponding fatty alcohols, with the highest rate found for palmitoyl-CoA (C16:0). The dependence of the rate of reduction of palmitoyl-CoA on substrate concentration was cooperative, with an apparent K(m) ~ 4 μM, V(max) ~ 200 nmol NADP(+) min(-1) (mg protein)(-1), and n ~ 3. The enzyme also reduced a range of fatty aldehydes with decanal having the highest activity. The substrate cis-11-hexadecenal was reduced in a cooperative manner with an apparent K(m) of ~50 μM, V(max) of ~8 μmol NADP(+) min(-1) (mg protein)(-1), and n ~ 2.

133 citations


Journal ArticleDOI
TL;DR: There are at least two pathways existing among prokaryotes for the reduction of activated acyl substrates to fatty alcohol, and the Marinobacter fatty acyl reductase studied has a wide substrate range in comparison to what can be found among enzymes so far studied in eukaryotes.

125 citations


Journal ArticleDOI
TL;DR: The data of this study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.
Abstract: Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters.

46 citations


Journal ArticleDOI
TL;DR: Results underscore the functional relationship between ACOT and fatty acid oxidation, and suggest adaptive upregulation of ACOT to protect against fatty acid oversupply in the heart and skeletal muscle.
Abstract: In rodent models of diet-induced obesity, prolonged high-fat feeding increases the cellular uptake of fatty acids and causes lipotoxicity in the heart and skeletal muscle, where substrate overload to beta-oxidation generates mitochondrial stress. We examined the hypothesis that, because of its catalytic properties, acyl-CoA thioesterase (ACOT) would counteract these detrimental situations by modulating intracellular acyl-CoA levels. Rats were fed a low- or high-fat diet for up to 20 weeks, and the expressions of ACOT isoforms and fatty acid beta-oxidation enzymes were analyzed by western blotting. The expressions of ACOT1, ACOT2 and ACOT7 proteins in the heart and soleus muscle were significantly increased, by 2.0-7.6-fold, in rats fed the high-fat diet as compared with the low-fat diet group. These effects were accompanied by increases in carnitine palmitoyltransferase and acyl-CoA oxidase expression. However, ACOT was not induced in the extensor digitorum longus muscle or the liver. Subcellular fractionation of heart and soleus muscle homogenates confirmed expression of both the cytosolic and mitochondrial ACOT isoforms. These results underscore the functional relationship between ACOT and fatty acid oxidation, and suggest adaptive upregulation of ACOT to protect against fatty acid oversupply in the heart and skeletal muscle.

45 citations


Journal ArticleDOI
TL;DR: It is demonstrated that a minimal number of mutations can have a profound impact on the regioselectivity of acyl-CoA fatty acid desaturases and the first biochemical data supporting the acyl -CoA acyl carrier specificity of a desaturase able to carry out Δ12-desaturation is included.

40 citations


Journal ArticleDOI
TL;DR: Stimulation of K(+) transport by FFAs/acyl-CoAs resulted in a widespread phenomenon in plant mitochondria from different mono/dicotyledonous species and from different organs (root, tuber, leaf, and shoot).
Abstract: The effect of free fatty acids (FFAs) and acyl-CoA esters on K(+) uptake was studied in mitochondria isolated from durum wheat (Triticum durum Desf.), a species that has adapted well to the semi-arid Mediterranean area and possessing a highly active mitochondrial ATP-sensitive K(+) channel (PmitoK(ATP)), that may confer resistance to environmental stresses. This was made by swelling experiments in KCl solution under experimental conditions in which PmitoK(ATP) activity was monitored. Linoleate and other FFAs (laurate, palmitate, stearate, palmitoleate, oleate, arachidonate, and the non-physiological 1-undecanesulphonate and 5-phenylvalerate), used at a concentration (10 μM) unable to damage membranes of isolated mitochondria, stimulated K(+) uptake by about 2-4-fold. Acyl-CoAs also promoted K(+) transport to a much larger extent with respect to FFAs (about 5-12-fold). In a different experimental system based on safranin O fluorescence measurements, the dissipation of electrical membrane potential induced by K(+) uptake via PmitoK(ATP) was found to increase in the presence of 5-phenylvalerate and palmitoyl-CoA, both unable to elicit the activity of the Plant Uncoupling Protein. This result suggests a direct activation of PmitoK(ATP). Stimulation of K(+) transport by FFAs/acyl-CoAs resulted in a widespread phenomenon in plant mitochondria from different mono/dicotyledonous species (bread wheat, barley, triticale, maize, lentil, pea, and topinambur) and from different organs (root, tuber, leaf, and shoot). Finally, an increase in mitochondrial FFAs up to a content of 50 nmol mg(-1) protein, which was able to activate PmitoK(ATP) strongly, was observed under hyperosmotic stress conditions. Since PmitoK(ATP) may act against environmental/oxidative stress, its activation by FFAs/acyl-CoAs is proposed to represent a physiological defence mechanism.

38 citations


Journal ArticleDOI
TL;DR: Data herein showed for the first time that the L-CPTI C-terminal 89 residues were sufficient for high affinity binding of LCFA-CoA and direct interaction with several cytoplasmic LCFA -CoA binding proteins, leading to enhanced CPTI activity.
Abstract: Although the rate limiting step in mitochondrial fatty acid oxidation, catalyzed by carnitine palmitoyl transferase I (CPTI), utilizes long-chain fatty acyl-CoAs (LCFA-CoA) as a substrate, how LCFA-CoA is transferred to CPTI remains elusive. Based on secondary structural predictions and conserved tryptophan residues, the cytoplasmic C-terminal domain was hypothesized to be the LCFA-CoA binding site and important for interaction with cytoplasmic LCFA-CoA binding/transport proteins to provide a potential route for LCFA-CoA transfer. To begin to address this question, the cytoplasmic C-terminal region of liver CPTI (L-CPTI) was recombinantly expressed and purified. Data herein showed for the first time that the L-CPTI C-terminal 89 residues were sufficient for high affinity binding of LCFA-CoA (K d = 2–10 nM) and direct interaction with several cytoplasmic LCFA-CoA binding proteins (K d < 10 nM), leading to enhanced CPTI activity. Furthermore, alanine substitutions for tryptophan in L-CPTI (W391A and W452A) altered secondary structure, decreased binding affinity for LCFA-CoA, and almost completely abolished L-CPTI activity, suggesting that these amino acids may be important for ligand stabilization necessary for L-CPTI activity. Moreover, while decreased activity of the W452A mutant could be explained by decreased binding of lipid binding proteins, W391 itself seems to be important for activity. These data suggest that both interactions with lipid binding proteins and the peptide itself are important for optimal enzyme activity.

37 citations


Journal ArticleDOI
TL;DR: Results indicate that, in differentiating brown adipocytes, cytosolic ACOT1 becomes down regulated as the cellular use of acyl-CoA increases, while mitochondrial ACOT2 is upregulated as the β-oxidation capacity increases.

17 citations


Journal ArticleDOI
TL;DR: Results suggest that long-chain fatty acid uptake in C. crescentus proceeds through a mechanism that is likely to involve one or more proteins, similar to those defined in Escherichia coli.
Abstract: Studies evaluating the uptake of long-chain fatty acids in Caulobacter crescentus are consistent with a protein-mediated process. Using oleic acid (C18:1) as a substrate, fatty acid uptake was linear for up to 15 min. This process was saturable giving apparent Vmax and Km values of 374 pmol oleate transported/min/mg total protein and 61 μM oleate, respectively, consistent with the notion that one or more proteins are likely involved. The rates of fatty acid uptake in C. crescentus were comparable to those defined in Escherichia coli. Uncoupling the electron transport chain inhibited oleic acid uptake, indicating that like the long-chain fatty acid uptake systems defined in other gram-negative bacteria, this process is energy-dependent in C. crescentus. Long-chain acyl CoA synthetase activities were also evaluated to address whether vectorial acylation represented a likely mechanism driving fatty acid uptake in C. crescentus. These gram-negative bacteria have considerable long-chain acyl CoA synthetase activity (940 pmol oleoyl CoA formed/min/mg total protein), consistent with the notion that the formation of acyl CoA is coincident with uptake. These results suggest that long-chain fatty acid uptake in C. crescentus proceeds through a mechanism that is likely to involve one or more proteins.

6 citations