scispace - formally typeset
Search or ask a question
Topic

Acyl-CoA

About: Acyl-CoA is a research topic. Over the lifetime, 527 publications have been published within this topic receiving 25134 citations. The topic is also known as: Acyl Coenzyme A.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that prolonged inhibition of adenine nucleotide translocation by long-chain acyl CoA esters may exert a deleterious effect on myocardial metabolism.

54 citations

Journal ArticleDOI
TL;DR: The results indicate that the peroxisomal beta-oxidation enzyme proteins are not only present immunologically but also functionally active which suggests that the defect in X-linked adrenoleukodystrophy is, indeed, as recently suggested by Hashmi and coworkers at the level of a deficient peroxISomal activation of very long chain fatty acids.

54 citations

Journal ArticleDOI
TL;DR: The results indicate that, despite previously published reports to the contrary, human vascular endothelial cells are similar to other normal mammalian cells in having fatty acyl Δ6-desaturase activity.

53 citations

Journal ArticleDOI
TL;DR: Dilution of the total cellular [14C]acyl carnitine by triacylglycerol hydrolysis was not sufficient to account for the decrease in exogenous palmitate oxidation, and the possibility that a small pool of rapidly turning over acyl carnitines becomes dilated is discussed.
Abstract: Palmitate metabolism was determined in isolated perfused hearts containing elevated levels of coenzyme A (CoA). CoA levels were elevated by perfusing hearts with Krebs-Henseleit buffer containing 0.1 mM cysteine, 0.2 mM dithiothreitol, 15 microM pantothenic acid, and no energy substrate. After 45 min, CoA levels had increased from 537 +/- 14 to 818 +/- 44 nmol/g dry wt. When these hearts containing high CoA were subsequently perfused as working hearts with buffer containing 11 mM glucose and 1.2 mM palmitate, long chain acyl CoA levels increased (94 +/- 5-305 +/- 6 nmol/g dry wt). Oxidation of exogenous palmitate (as measured by 14CO2 production from [U-14C]palmitate) was significantly depressed in hearts containing elevated CoA levels. This apparent reduction in fatty acid oxidation was not due to increased glucose or glycogen utilization. When the concentration of palmitate was decreased to 0.4 mM, acyl CoA levels increased much less, and the apparent rate of [14C]palmitate oxidation was unaffected by elevated CoA. Hearts containing high CoA also incorporated [14C]palmitate into triacylglycerols to a greater extent than did control hearts. To determine whether the apparent decrease in exogenous palmitate oxidation resulted from an increased utilization of unlabeled endogenous triacylglycerol fatty acid, [14C]palmitate specific activity was measured in myocardial acylcarnitine. The specific activity of this pool of fatty acid was similar in both control hearts and hearts containing elevated CoA. Thus dilution of the total cellular [14C]acyl carnitine by triacylglycerol hydrolysis was not sufficient to account for the decrease in [U-14C]palmitate oxidation. The possibility that a small pool of rapidly turning over acyl carnitine becomes dilated is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)

53 citations

Journal ArticleDOI
TL;DR: The present study is designed to clarify the insulin‐sensitizing mechanism of crocetin by elucidating the mechanism of regulation of lipid metabolism by crocets in order to explain the amelioration of insulin resistance by treatment with crocettin.
Abstract: Background and purpose: The amelioration of insulin resistance by treatment with crocetin is closely related to the hypolipidaemic effect. The present study is designed to clarify the insulin-sensitizing mechanism of crocetin by elucidating the mechanism of regulation of lipid metabolism by crocetin. Experimental approach: Rats given a high-fat diet were treated with crocetin for 6 weeks before hyperinsulinaemic–euglycaemic clamp. 14C-palmitate was used as tracer to track the fate of non-esterified fatty acids or as substrate to measure β-oxidation rate. Triglyceride clearance in plasma and lipoprotein lipase activity in tissues were tested. Content of lipids in plasma and tissues was determined. Real-time PCR was used to assay the level of mRNA from genes involved in non-esterified fatty acid and triglyceride uptake and oxidation. Key results: Crocetin prevented high-fat-diet induced insulin resistance (increased clamp glucose infusion rate), raised hepatic non-esterified fatty acid uptake and oxidation, accelerated triglyceride clearance in plasma, enhanced lipoprotein lipase activity in liver, and reduced the accumulation of detrimental lipids (DAG and long-chain acyl CoA) in liver and muscle. Genes involved in hepatic lipid metabolism which are regulated by peroxisome proliferator-activated receptor-α, were modulated to accelerate lipid uptake and oxidation. Conclusions and implications: Through regulating genes involved in lipid metabolism, crocetin accelerated hepatic uptake and oxidation of non-esterified fatty acid and triglyceride, and reduced lipid availability to muscle, thus decreasing lipid accumulation in muscle and liver, and consequently improving sensitivity to insulin. British Journal of Pharmacology (2008) 154, 1016–1024; doi:10.1038/bjp.2008.160; published online 12 May 2008

53 citations


Network Information
Related Topics (5)
Protein subunit
33.2K papers, 1.7M citations
83% related
Amino acid
124.9K papers, 4M citations
82% related
Binding site
48.1K papers, 2.5M citations
82% related
Cholesterol
44.6K papers, 1.9M citations
81% related
Protein kinase A
68.4K papers, 3.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
202212
20218
20205
20193
20185