scispace - formally typeset
Search or ask a question

Showing papers on "Ad hoc wireless distribution service published in 1999"


Journal ArticleDOI
TL;DR: Routing protocols for ad hoc networks are examined by providing an overview of eight different protocols by presenting their characteristics and functionality, and then a comparison and discussion of their respective merits and drawbacks are provided.
Abstract: An ad hoc mobile network is a collection of mobile nodes that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This article examines routing protocols for ad hoc networks and evaluates these protocols based on a given set of parameters. The article provides an overview of eight different protocols by presenting their characteristics and functionality, and then provides a comparison and discussion of their respective merits and drawbacks.

4,278 citations


Proceedings ArticleDOI
01 Aug 1999
TL;DR: This paper proposes several schemes to reduce redundant rebroadcasts and differentiate timing of rebroadcast to alleviate the broadcast storm problem, which is identified by showing how serious it is through analyses and simulations.
Abstract: Broadcasting is a common operation in a network to resolve many issues. In a mobile ad hoc network (MANET) in particular, due to host mobility, such operations are expected to be executed more frequently (such as finding a route to a particular host, paging a particular host, and sending an alarm signal). Because radio signals are likely to overlap with others in a geographical area, a straightforward broadcasting by flooding is usually very costly and will result in serious redundancy, contention, and collision, to which we call the broadcast storm problem. In this paper, we identify this problem by showing how serious it is through analyses and simulations. We propose several schemes to reduce redundant rebroadcasts and differentiate timing of rebroadcasts to alleviate this problem. Simulation results are presented, which show different levels of improvement over the basic flooding approach.

3,819 citations


Journal ArticleDOI
TL;DR: This article takes advantage of the inherent redundancy in ad hoc networks-multiple routes between nodes-to defend routing against denial-of-service attacks and uses replication and new cryptographic schemes to build a highly secure and highly available key management service, which terms the core of this security framework.
Abstract: Ad hoc networks are a new wireless networking paradigm for mobile hosts. Unlike traditional mobile wireless networks, ad hoc networks do not rely on any fixed infrastructure. Instead, hosts rely on each other to keep the network connected. Military tactical and other security-sensitive operations are still the main applications of ad hoc networks, although there is a trend to adopt ad hoc networks for commercial uses due to their unique properties. One main challenge in the design of these networks is their vulnerability to security attacks. In this article, we study the threats on ad hoc network faces and the security goals to be achieved. We identify the new challenges and opportunities posed by this new networking environment and explore new approaches to secure its communication. In particular, we take advantage of the inherent redundancy in ad hoc networks-multiple routes between nodes-to defend routing against denial-of-service attacks. We also use replication and new cryptographic schemes, such as threshold cryptography, to build a highly secure and highly available key management service, which terms the core of our security framework.

2,661 citations


01 Jan 1999
TL;DR: The characteristics of Mobile Ad hoc Networks (MANETs), and their idiosyncrasies with respect to traditional, hardwired packet networks, are described, with an emphasis on routing performance evaluation considerations.
Abstract: This memo first describes the characteristics of Mobile Ad hoc Networks (MANETs), and their idiosyncrasies with respect to traditional, hardwired packet networks. It then discusses the effect these differences have on the design and evaluation of network control protocols with an emphasis on routing performance evaluation considerations.

2,115 citations


Proceedings ArticleDOI
01 Aug 1999
TL;DR: The first distributed algorithms for routing that do not require duplication of packets or memory at the nodes and yet guarantee that a packet is delivered to its destination are described.
Abstract: We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of packets or memory at the nodes and yet guarantee that a packet is delivered to its destination. These algorithms can be extended to yield algorithms for broadcasting and geocasting that do not require packet duplication. A byproduct of our results is a simple distributed protocol for extracting a planar subgraph of a unit graph. We also present simulation results on the performance of our algorithms.

1,537 citations


Proceedings ArticleDOI
01 Aug 1999
TL;DR: It is shown that group motion occurs frequently in ad hoc networks, and a novel group mobility model Reference Point Group Mobility (RPGM) is introduced to represent the relationship among mobile hosts.
Abstract: In this paper, we present a survey of various mobility models in both cellular networks and multi-hop networks We show that group motion occurs frequently in ad hoc networks, and introduce a novel group mobility model Reference Point Group Mobility (RPGM) to represent the relationship among mobile hosts RPGM can be readily applied to many existing applications Moreover, by proper choice of parameters, RPGM can be used to model several mobility models which were previously proposed One of the main themes of this paper is to investigate the impact of the mobility model on the performance of a specific network protocol or application To this end, we have applied our RPGM model to two different network protocol scenarios, clustering and routing, and have evaluated network performance under different mobility patterns and for different protocol implementations As expected, the results indicate that different mobility patterns affect the various protocols in different ways In particular, the ranking of routing algorithms is influenced by the choice of mobility pattern

1,503 citations


Proceedings ArticleDOI
01 Aug 1999
TL;DR: In this paper, the authors proposed a simple and efficient distributed algorithm for calculating connected dominating set in ad-hoc wireless networks, where connections of nodes are determined by their geographical distances.
Abstract: Efficient routing among a set of mobile hosts (also called nodes) is one of the most important functions in ad-hoc wireless networks. Routing based on a connected dominating set is a frequently used approach, where the searching space for a route is reduced to nodes in the set. A set is dominating if all the nodes in the system are either in the set or neighbors of nodes in the set. In this paper, we propose a simple and efficient distributed algorithm for calculating connected dominating set in ad-hoc wireless networks, where connections of nodes are determined by their geographical distances. Our simulation results show that the proposed approach outperforms a classical algorithm. Our approach can be potentially used in designing efficient routing algorithms based on a connected dominating set.

1,198 citations


Journal ArticleDOI
TL;DR: This paper proposes a distributed QoS routing scheme that selects a network path with sufficient resources to satisfy a certain delay (or bandwidth) requirement in a dynamic multihop mobile environment and can tolerate a high degree of information imprecision.
Abstract: In an ad hoc network, all communication is done over wireless media, typically by radio through the air, without the help of wired base stations. Since direct communication is allowed only between adjacent nodes, distant nodes communicate over multiple hops. The quality-of-service (QoS) routing in an ad hoc network is difficult because the network topology may change constantly, and the available state information for routing is inherently imprecise. In this paper, we propose a distributed QoS routing scheme that selects a network path with sufficient resources to satisfy a certain delay (or bandwidth) requirement in a dynamic multihop mobile environment. The proposed algorithms work with imprecise state information. Multiple paths are searched in parallel to find the most qualified one. Fault-tolerance techniques are brought in for the maintenance of the routing paths when the nodes move, join, or leave the network. Our algorithms consider not only the QoS requirement, but also the cost optimality of the routing path to improve the overall network performance. Extensive simulations show that high call admission ratio and low-cost paths are achieved with modest routing overhead. The algorithms can tolerate a high degree of information imprecision.

878 citations


Proceedings ArticleDOI
21 Sep 1999
TL;DR: The protocol, termed ODMRP (on-demand multicast routing protocol), is a mesh-based, rather than a conventional tree-based multicast scheme and uses a forwarding group concept (only a subset of nodes forwards the multicast packets via scoped flooding).
Abstract: This paper presents a novel multicast routing protocol for mobile ad hoc wireless networks. The protocol, termed ODMRP (on-demand multicast routing protocol), is a mesh-based, rather than a conventional tree-based multicast scheme and uses a forwarding group concept (only a subset of nodes forwards the multicast packets via scoped flooding). It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP's scalability and performance via simulation.

795 citations


Journal ArticleDOI
TL;DR: A large population of mobile stations that are interconnected by a multihop wireless network is considered, with the need to support multimedia communications, with low latency requirements for interactive traffic and quality-of-service (QoS) support for real-time streams (voice/video).
Abstract: We consider a large population of mobile stations that are interconnected by a multihop wireless network. The applications of this wireless infrastructure range from ad hoc networking (e.g., collaborative, distributed computing) to disaster recovery (e.g., fire, flood, earthquake), law enforcement (e.g., crowd control, search-and-rescue), and military (automated battlefield). Key characteristics of this system are the large number of users, their mobility, and the need to operate without the support of a fixed (wired or wireless) infrastructure. The last feature sets this system apart from existing cellular systems and in fact makes its design much more challenging. In this environment, we investigate routing strategies that scale well to large populations and can handle mobility. In addition, we address the need to support multimedia communications, with low latency requirements for interactive traffic and quality-of-service (QoS) support for real-time streams (voice/video). In the wireless routing area, several schemes have already been proposed and implemented (e.g., hierarchical routing, on-demand routing, etc.). We introduce two new schemes-fisheye state routing (FSR) and hierarchical state routing (HSR)-which offer some competitive advantages over the existing schemes. We compare the performance of existing and proposed schemes via simulation.

768 citations


Journal ArticleDOI
TL;DR: A novel framework for dynamically organizing mobile nodes in wireless ad hoc networks into clusters in which the probability of path availability can be bounded is presented, which supports an adaptive hybrid routing architecture that can be more responsive and effective when mobility rates are low and more efficient when Mobility rates are high.
Abstract: This paper presents a novel framework for dynamically organizing mobile nodes in wireless ad hoc networks into clusters in which the probability of path availability can be bounded. The purpose of the (/spl alpha/, t) cluster is to help minimize the far-reaching effects of topological changes while balancing the need to support more optimal routing. A mobility model for ad hoc networks is developed and is used to derive expressions for the probability of path availability as a function of time. It is shown how this model provides the basis for dynamically grouping nodes into clusters using an efficient distributed clustering algorithm. Since the criteria for cluster organization depends directly upon path availability, the structure of the cluster topology is adaptive with respect to node mobility. Consequently, this framework supports an adaptive hybrid routing architecture that can be more responsive and effective when mobility rates are low and more efficient when mobility rates are high.

Proceedings ArticleDOI
21 Mar 1999
TL;DR: Preliminary performance evaluation shows that CEDAR is a robust and adaptive QoS routing algorithm that reacts effectively to the dynamics of the network while still approximating link-state performance for stable networks.
Abstract: CEDAR is an algorithm for QoS routing in ad hoc network environments. It has three key components: (a) the establishment and maintenance of a self-organizing routing infrastructure called the core for performing route computations, (b) the propagation of the link-state of stable high-bandwidth links in the core through increase/decrease waves, and (c) a QoS route computation algorithm that is executed at the core nodes using only locally available state. But preliminary performance evaluation shows that CEDAR is a robust and adaptive QoS routing algorithm that reacts effectively to the dynamics of the network while still approximating link-state performance for stable networks.

Journal ArticleDOI
TL;DR: The performance evaluations show that CEDAR is a robust and adaptive QoS routing algorithm that reacts quickly and effectively to the dynamics of the network while still approximating the performance of link-state routing for stable networks.
Abstract: We present CEDAR, a core-extraction distributed ad hoc routing algorithm for quality-of-service (QoS) routing in ad hoc network environments, CEDAR has three key components: (a) the establishment and maintenance of a self-organizing routing infrastructure called the core for performing route computations; (b) the propagation of the link-state of high bandwidth and stable links in the core through increase/decrease waves; and (c) a QoS-route computation algorithm that is executed at the core nodes using only locally available state. The performance evaluations show that CEDAR is a robust and adaptive QoS routing algorithm that reacts quickly and effectively to the dynamics of the network while still approximating the performance of link-state routing for stable networks.

Proceedings ArticleDOI
11 Oct 1999
TL;DR: An analytic modeling framework is developed to determine the relative frequency of query floods for various techniques and shows that while multipath routing is significantly better than single path routing, the performance advantage is small beyond a few paths and for long path lengths.
Abstract: Mobile ad hoc networks are characterized by multi-hop wireless links, absence of any cellular infrastructure, and frequent host mobility. Design of efficient routing protocols in such networks is a challenging issue. A class of routing protocols called on-demand protocols has recently attracted attention because of their low routing overhead. The on-demand protocols depend on query floods to discover routes whenever a new route is needed. Such floods take up a substantial portion of network bandwidth. We focus on a particular on-demand protocol, called dynamic source routing, and show how intelligent use of multipath techniques can reduce the frequency of query floods. We develop an analytic modeling framework to determine the relative frequency of query floods for various techniques. Results show that while multipath routing is significantly better than single path routing, the performance advantage is small beyond a few paths and for long path lengths. It also shows that providing all intermediate nodes in the primary (shortest) route with alternative paths has a significantly better performance than providing only the source with alternate paths.

Journal ArticleDOI
TL;DR: Simulation results show that the location search scheme generates less overhead than the schemes based on flooding, and results confirm that the communication overhead for creating and maintaining the topology in the proposed protocol is smaller than that in the flat LSR protocol.
Abstract: A new global positioning system (GPS)-based routing protocol for ad hoc networks, called zone-based hierarchical link state (ZHLS) routing protocol, is proposed. In this protocol, the network is divided into nonoverlapping zones. Each node only knows the node connectivity within its zone and the zone connectivity of the whole network. The link state routing is performed on two levels: focal node and global zone levels. Unlike other hierarchical protocols, there is no cluster head in this protocol. The zone level topological information is distributed to all nodes. This "peer-to-peer" manner mitigates traffic bottleneck, avoids single point of failure, and simplifies mobility management. Since only zone ID and node ID of a destination are needed for routing, the route from a source to a destination is adaptable to changing topology. The zone ID of the destination is found by sending one location request to every zone. Simulation results show that our location search scheme generates less overhead than the schemes based on flooding. The results also confirm that the communication overhead for creating and maintaining the topology in the proposed protocol is smaller than that in the flat LSR protocol. This new routing protocol provides a flexible, efficient, and effective approach to accommodate the changing topology in a wireless network environment.

Journal ArticleDOI
TL;DR: This paper presents and studies black-burst (BB) contention, which is a distributed MAC scheme that provides QoS real-time access to ad hoc CSMA wireless networks and provides conditions for the scheme to be stable.
Abstract: Carrier sense multiple access (CSMA) is one of the most pervasive medium access control (MAC) schemes in ad hoc, wireless networks. However, CSMA and its current variants do not provide quality-of-service (QoS) guarantees for real-time traffic support. This paper presents and studies black-burst (BB) contention, which is a distributed MAC scheme that provides QoS real-time access to ad hoc CSMA wireless networks. With this scheme, real-time nodes contend for access to the channel with pulses of energy-so called BBs-the durations of which are a function of the delay incurred by the nodes until the channel became idle. It is shown that real-time packets are not subject to collisions and that they have access priority over data packets. When operated in an ad hoc wireless LAN, BB contention further guarantees bounded and typically very small real-time delays. The performance of the network can approach that attained under ideal time division multiplexing (TDM) via a distributed algorithm that groups real-time packet transmissions into chains. A general analysis of BB contention is given, contemplating several modes of operation. The analysis provides conditions for the scheme to be stable. Its results are complemented with simulations that evaluate the performance of an ad hoc wireless LAN with a mixed population of data and real-time nodes.

Proceedings ArticleDOI
21 Sep 1999
TL;DR: It is shown via simulations that this new carrier-sense multiple access (CSMA) protocol provides a higher throughput compared to its single channel counterpart by reducing the packet loss due to collisions and the use of channel reservation provides better performance than multichannel CSMA with purely random idle channel selection.
Abstract: We describe a new carrier-sense multiple access (CSMA) protocol for multihop wireless networks, sometimes also called ad hoc networks. The CSMA protocol divides the available bandwidth into several channels and selects an idle channel randomly for packet transmission. It also employs a notion of "soft" channel reservation as it gives preference to the channel that was used for the last successful transmission. We show via simulations that this multichannel CSMA protocol provides a higher throughput compared to its single channel counterpart by reducing the packet loss due to collisions. We also show that the use of channel reservation provides better performance than multichannel CSMA with purely random idle channel selection.

Journal ArticleDOI
TL;DR: This paper analyze the use of on-demand behavior in routing protocols, focusing on its effect on the routing protocol's forwarding latency, overhead cost, and route caching correctness, drawing examples from detailed simulation of the dynamic source routing (DSR) protocol.
Abstract: A number of different routing protocols proposed for use in multihop wireless ad hoc networks are based in whole or in part on what can be described as on-demand behavior. By on-demand behavior, we mean approaches based only on reaction to the offered traffic being handled by the routing protocol. In this paper, we analyze the use of on-demand behavior in such protocols, focusing on its effect on the routing protocol's forwarding latency, overhead cost, and route caching correctness, drawing examples from detailed simulation of the dynamic source routing (DSR) protocol. We study the protocol's behavior and the changes introduced by variations on some of the mechanisms that make up the protocol, examining which mechanisms have the greatest impact and exploring the tradeoffs that exist between them.


Proceedings ArticleDOI
21 Sep 1999
TL;DR: MCEDAR is an extension to the CEDAR architecture and provides the robustness of mesh based routing protocols and the efficiency of tree based forwarding protocols and it decouples the control infrastructure from the actual data forwarding infrastructure.
Abstract: In this paper, we present the MCEDAR (multicast core extraction distributed ad hoc routing) multicast routing algorithm for ad hoc networks. MCEDAR is an extension to the CEDAR architecture and provides the robustness of mesh based routing protocols and the approximates the efficiency of tree based forwarding protocols. It decouples the control infrastructure from the actual data forwarding infrastructure. The decoupling allows for a very minimalistic and low overhead control infrastructure while still enabling very efficient data forwarding.

Journal ArticleDOI
TL;DR: The ad hoc network management protocol (ANMP) is fully compatible with simple management protocol, version 3 (SNMPv3) and uses the same protocol data units (PDUs) for data collection and implements sophisticated security mechanisms that can be fine-tuned to meet specific requirements.
Abstract: We present a protocol for managing mobile wireless ad hoc networks. The protocol uses hierarchical clustering of nodes to reduce the number of messages exchanged between the manager and the agents (mobiles). Clustering also enables the network to keep track of mobiles as they roam. The ad hoc network management protocol (ANMP) is fully compatible with simple management protocol, version 3 (SNMPv3) and uses the same protocol data units (PDUs) for data collection. The protocol also implements sophisticated security mechanisms that can be fine-tuned to meet specific requirements. Finally, we have implemented the protocol along with a graphical user interface that allows a manager to change the view or specify management parameters on the fly.

Journal ArticleDOI
TL;DR: The authors give an overview of Manet technology and current IETF efforts toward producing routing and interface definition standards that support it within the IP suite.
Abstract: Internet-based mobile ad hoc networking is an emerging technology that supports self-organizing, mobile networking infrastructures. The technology enables an autonomous system of mobile nodes, which can operate in isolation or be connected to the greater Internet. Mobile ad hoc networks (Manets) are designed to operate in widely varying environments, from forward-deployed military Manets with hundreds of nodes per mobile domain to applications of low-power sensor networks and other embedded systems. Before Manet technology can be easily deployed, however, improvements must be made in such areas as high-capacity wireless technologies, address and location management, interoperability and security. The authors give an overview of Manet technology and current IETF efforts toward producing routing and interface definition standards that support it within the IP suite.

Proceedings ArticleDOI
23 Jun 1999
TL;DR: A technique is described that allows a single ad hoc network to span across heterogeneous link layers, which can both integrate ad hoc networks into the hierarchical Internet and support the migration of mobile nodes from the Internet into and out of ad hoc Networks via Mobile IP.
Abstract: Much progress has been made toward solving the problem of routing packets inside an ad hoc network, but there are presently no complete proposals for connecting ad hoc networks together to form larger networks, or for integrating them with wired Internets. We describe a technique that allows a single ad hoc network to span across heterogeneous link layers. Using this technique, we can both integrate ad hoc networks into the hierarchical Internet and support the migration of mobile nodes from the Internet into and out of ad hoc networks via Mobile IP. Taken together, these solutions improve the scalability of flat ad hoc networks by introducing hierarchy, and they enable all nodes participating in the ad hoc network to be reachable from anywhere in the world. We have implemented each of the solutions in a real testbed of 8 nodes using the Dynamic Source Routing (DSR) protocol. Generalizing our solutions, we describe several abstract scenarios and present our ideas for solving them.

Journal ArticleDOI
TL;DR: Two on-demand routing protocols (dynamic source routing and associativity-based routing) with distinctive route selection algorithms are simulated in a common environment to quantitatively measure and contrast their performance.
Abstract: Bandwidth and power constraints are the main concerns in current wireless networks because multihop ad hoc mobile wireless networks rely on each node in the network to act as a router and packet forwarder. This dependency places bandwidth, power, and computation demands on mobile hosts which must be taken into account when choosing the best routing protocol. In previous years, protocols that build routes based on demand have been proposed. The major goal of on-demand routing protocols is to minimize control traffic overhead. We perform a simulation and performance study on some routing protocols for ad hoc networks. The distributed Bellman-Ford (1957, 1962), a traditional table-driven routing algorithm, is simulated to evaluate its performance in multihop wireless network. In addition, two on-demand routing protocols (dynamic source routing and associativity-based routing) with distinctive route selection algorithms are simulated in a common environment to quantitatively measure and contrast their performance. The final selection of an appropriate protocol will depend on a variety of factors, which are discussed in this article.

Proceedings ArticleDOI
05 Dec 1999
TL;DR: A new protocol, the flow oriented routing protocol (FORP), for routing real-time IPv6 flows in highly mobile ad hoc wireless networks with a new concept called "multi-hop handoff" to anticipate topological changes and perform rerouting, thus limiting the disruption of a flow due to the changing topology.
Abstract: In an ad hoc wireless network, mobile hosts are acting as routers and the network topology is constantly changing due to node mobility. The disruptions can cause serious degradation for real-time session. This paper describes a new protocol, the flow oriented routing protocol (FORP), for routing real-time IPv6 flows (e.g., voice and data) in highly mobile ad hoc wireless networks. A new concept called "multi-hop handoff" is introduced to anticipate topological changes and perform rerouting, thus limiting the disruption of a flow due to the changing topology. The performance of the proposed scheme is compared to other routing approaches.

ReportDOI
05 Mar 1999
TL;DR: This paper describes the experiences of building a multi-hop wireless ad hoc network of 8 nodes driving around a 700 m by 300 m site, which runs the Dynamic Source Routing protocol and interfaces seamlessly with existing Internet infrastructure and the Mobile IP protocol.
Abstract: : In this paper, we describe our experiences building a multi-hop wireless ad hoc network of 8 nodes driving around a 700 m by 300 m site. Each node runs the Dynamic Source Routing (DSR) protocol and interfaces seamlessly with existing Internet infrastructure and the Mobile IP protocol. The issues discussed in this paper range from logistical and management issues, to protocol design and performance analysis issues. We also present an early characterization of the testbed performance, and describe a significant new challenge for ad hoc network routing protocols. The major goal of the paper, however, is to share our experiences, in the belief that they may be useful to others who attempt to build other ad hoc network testbeds.

Proceedings ArticleDOI
01 Aug 1999
TL;DR: A loop-free routing protocol for ad hoc mobile networks that is highly adaptive, efficient and scaleable; and is well-suited in large mobile networks whose rate of topological changes is moderate.
Abstract: We present a loop-free routing protocol for ad hoc mobile networks. The protocol is highly adaptive, efficient and scaleable; and is well-suited in large mobile networks whose rate of topological changes is moderate. A key concept in its design is that protocol reaction to link failures is typically localised to a very small region of the network near the change. This desirable behaviour is achieved through the use of a novel mechanism for route discovery, called Relative Distance Micro-discovery (RDM). The concept behind RDM is that a query flood can be localised by knowing the relative distance (RD) between two terminals. To accomplish this, every time a route search between the two terminals is triggered, an iterative algorithm calculates an estimate of their RD, given an average nodal mobility and information about the elapsed time since they last communicated and their previous RD. Based on the newly calculated RD, the query flood is then localised to a limited region of the network centred at the source node of the route discovery and with maximum propagation radius that equals to the estimated relative distance. This ability to localise query flooding into a limited area of the network serves to minimise routing overhead and overall network congestion. Simulation results illustrate its performance and demonstrate its good behaviour comparing to other protocols proposed by IETF Working Group. We refer to the protocol as the Relative Distance Micro-discovery Ad Hoc Routing (RDMAR) protocol.

Proceedings ArticleDOI
01 Aug 1999
TL;DR: Modifications to vector based routing algorithms to make them work in ad hoc netsworks wit.h unidirectional links are presented.
Abstract: Most, of t,he routing algorithms for ad hoc net,works assume t,hat all wireless links are bidirect,ional. In realit,y, some links may be unidirect.ional. The presence of such links can jeopardize t,he performance of t,he existing dist,ance vect.or rout.ing algorit.hms. In this paper we show t,hat, dist.ance vector based rout,ing prot.ocols t,hat, account for unidirectional links will require nodes t.o exchange O(n2) informat.ion with each other, where n is t.he number of nodes in t,he nebwork. We also present. modifications to dist,ance vector based routing algorithms to make t,hem work in ad hoc netsworks wit.h unidirectional links.

Proceedings ArticleDOI
11 Oct 1999
TL;DR: A mobility prediction scheme to help select stable routes and to perform rerouting in anticipation of topology changes is proposed and techniques to improve transmission reliability and eliminate route acquisition latency are introduced.
Abstract: An ad hoc wireless network is an infrastructureless network composed of mobile hosts. The primary concerns in ad hoc networks are bandwidth limitations and unpredictable topology changes. Thus, efficient utilization of routing packets and immediate recovery of route breaks are critical in routing and multicasting protocols. A multicast scheme, on-demand multicast routing protocol (ODMRP), has been recently proposed for mobile ad hoc networks. ODMRP is a reactive (on-demand) protocol that delivers packets to destinations on a mesh topology using scoped flooding of data. A number of enhancements can be applied to improve the performance of ODMRP. In this paper, we propose a mobility prediction scheme to help select stable routes and to perform rerouting in anticipation of topology changes. We also introduce techniques to improve transmission reliability and eliminate route acquisition latency. The impact of our improvements is evaluated via simulation.

01 Jan 1999
TL;DR: This paper shows that using five different power-aware metrics based on battery power consumption at nodes for determining broadcast routes in wireless ad hoc networks reduces the cost/broadcast of routing packets to all destinations by 5-50% over a broadcast tree constructed using a greedy strategy based on network topology information only.
Abstract: In this paper we present five different power-aware metrics based on battery power consumption at nodes for determining broadcast routes in wireless ad hoc networks. We show that using these metrics in a power-aware broadcasting algorithm reduces the cost/broadcast of routing packets to all destinations by 5-50% over a broadcast tree constructed using a greedy strategy based on network topology information only (this cost reduction is on top of a 40-70% reduction in energy consumption obtained by using PAMAS, our MAC layer protocol). We also show that the maximum node cost after many broadcasts is reduced by 20-150% with the power-aware algorithm compared to the nonpower-aware algorithm, thereby increasing the life of the network significantly. For comparison purposes, we also ran simulations with the flooding algorithm for broadcasting which performs worse by a factor of 10 compared to the power-aware algorithm. An interesting property of using power-aware broadcasting is that the average packet delays do not increase. Technical Subject Area: Adaptive Traffic and Access Control Protocol, Radio Resource Management