scispace - formally typeset
Search or ask a question
Topic

Ad hoc wireless distribution service

About: Ad hoc wireless distribution service is a research topic. Over the lifetime, 17734 publications have been published within this topic receiving 488205 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper mathematically formulate the routing selection issue as a constrained optimization problem and proposes an ant colony optimization (ACO)-based algorithm to solve this problem, and a terminal intersection (TI) concept is presented to decrease routing exploration time and alleviate network congestion.
Abstract: Developing highly efficient routing protocols for vehicular ad hoc networks (VANETs) is a challenging task, mainly due to the special characters of such networks: large-scale sizes, frequent link disconnections, and rapid topology changes. In this paper, we propose an adaptive quality-of-service (QoS)-based routing for VANETs called AQRV. This new routing protocol adaptively chooses the intersections through which data packets pass to reach the destination, and the selected route should satisfy the QoS constraints and fulfil the best QoS in terms of three metrics, namely connectivity probability, packet delivery ratio (PDR), and delay. To achieve the given objectives, we mathematically formulate the routing selection issue as a constrained optimization problem and propose an ant colony optimization (ACO)-based algorithm to solve this problem. In addition, a terminal intersection (TI) concept is presented to decrease routing exploration time and alleviate network congestion. Moreover, to decrease network overhead, we propose local QoS models (LQMs) to estimate real time and complete QoS of urban road segments. Simulation results validate our derived LQM models and show the effectiveness of AQRV.

151 citations

Proceedings ArticleDOI
07 Mar 2004
TL;DR: The results presented in the paper highlight the need to design future wireless network protocols for wireless ad hoc and sensor networks based, not on common-range which is prevalent today, but on variable-range power control.
Abstract: We study the impact of individual variable-range transmission power control on the physical and network connectivity, network capacity and power savings of wireless multihop networks such as ad hoc and sensor networks. First, using previous work by Steele (1988) and Gupta (2000) we derive an asymptotic expression for the average traffic carrying capacity of nodes in a multihop network where nodes can individually control the transmission range they use. For the case of a path attenuation factor /spl alpha/ = 2 we show that this capacity remains constant even when more nodes are added to the network. Second, we show that the ratio between the minimum transmission range levels obtained using common-range and variable-range based routing protocols is approximately 2. This is an important result because it suggests that traditional routing protocols based on common-range transmission can only achieve about half the traffic carrying capacity of variable-range power control approaches. In addition, common-range approaches consume /spl sim/ (1 $2/(2/sup /spl alpha//)) % more transmission power. Second, we derive a model that approximates the signaling overhead of a routing protocol as a function of the transmission range and node mobility for both route discovery and route maintenance. We show how routing protocols based on common-range transmission power limit the capacity available to mobile nodes. The results presented in the paper highlight the need to design future wireless network protocols (e.g., routing protocols) for wireless ad hoc and sensor networks based, not on common-range which is prevalent today, but on variable-range power control.

150 citations

Book ChapterDOI
01 Jan 2004
TL;DR: This chapter proposes a new efficient heuristic algorithm for the minimum connected dominating set problem that reduces the size of the CDS by excluding some vertices using a greedy criterion and discusses a distributed version of this algorithm.
Abstract: Given a graph G = (V, E), a dominating set D is a subset of V such that any vertex not in D is adjacent to at least one vertex in D. Efficient algorithms for computing the minimum connected dominating set (MCDS) are essential for solving many practical problems, such as finding a minimum size backbone in ad hoc networks. Wireless ad hoc networks appear in a wide variety of applications, including mobile commerce, search and discovery, and military battlefield. In this chapter we propose a new efficient heuristic algorithm for the minimum connected dominating set problem. The algorithm starts with a feasible solution containing all vertices of the graph. Then it reduces the size of the CDS by excluding some vertices using a greedy criterion. We also discuss a distributed version of this algorithm. The results of numerical testing show that, despite its simplicity, the proposed algorithm is competitive with other existing approaches.

150 citations

Journal ArticleDOI
TL;DR: The results clearly demonstrate that the proposed FF-AOMDV outperformed AomDV and AOMR-LM under majority of the network performance metrics and parameters.
Abstract: Mobile ad hoc network (MANET) is a collection of wireless mobile nodes that dynamically form a temporary network without the reliance of any infrastructure or central administration Energy consumption is considered as one of the major limitations in MANET, as the mobile nodes do not possess permanent power supply and have to rely on batteries, thus reducing network lifetime as batteries get exhausted very quickly as nodes move and change their positions rapidly across MANET This paper highlights the energy consumption in MANET by applying the fitness function technique to optimize the energy consumption in ad hoc on demand multipath distance vector (AOMDV) routing protocol The proposed protocol is called AOMDV with the fitness function (FF-AOMDV) The fitness function is used to find the optimal path from source node to destination node to reduce the energy consumption in multipath routing The performance of the proposed FF-AOMDV protocol has been evaluated by using network simulator version 2, where the performance was compared with AOMDV and ad hoc on demand multipath routing with life maximization (AOMR-LM) protocols, the two most popular protocols proposed in this area The comparison was evaluated based on energy consumption, throughput, packet delivery ratio, end-to-end delay, network lifetime and routing overhead ratio performance metrics, varying the node speed, packet size, and simulation time The results clearly demonstrate that the proposed FF-AOMDV outperformed AOMDV and AOMR-LM under majority of the network performance metrics and parameters

150 citations

Proceedings ArticleDOI
03 Jul 2006
TL;DR: An analytical model takes into account the number of nodes, the random packet arrival process, the extent of locality of traffic, and the back off and collision avoidance mechanisms of random access MAC to characterize the average end-to-end delay and maximum achievable per-node throughput in random access multihop wireless ad hoc networks with stationary nodes.
Abstract: In this paper we focus on characterizing the average end-to-end delay and maximum achievable per-node throughput in random access multihop wireless ad hoc networks with stationary nodes. We present an analytical model that takes into account the number of nodes, the random packet arrival process, the extent of locality of traffic, and the back off and collision avoidance mechanisms of random access MAC. We model random access multihop wireless networks as open G/G/1 queuing networks and use the diffusion approximation to evaluate closed form expressions for the average end-to-end delay. The mean service time of nodes is derived and used to obtain the maximum achievable per-node throughput. The analytical results obtained here from the queuing network analysis are discussed with regard to similarities and differences from the well established information-theoretic results on throughput and delay scaling laws in ad hoc networks. We perform extensive simulations and verify that the analytical results closely match the results obtained from simulations.

149 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
96% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
95% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202261
20215
20202
20192
201856