scispace - formally typeset
Search or ask a question
Topic

Ad hoc wireless distribution service

About: Ad hoc wireless distribution service is a research topic. Over the lifetime, 17734 publications have been published within this topic receiving 488205 citations.


Papers
More filters
01 Jan 2010
TL;DR: This paper is a survey of active research work on routing protocols for MANET, an autonomously self-organized networks without infrastructure support that may experience rapid and unpredictable topology changes.
Abstract: Mobile ad hoc networks (MANETs) are autonomously self-organized networks without infrastructure support. In a mobile ad hoc network, nodes move arbitrarily; therefore the network may experience rapid and unpredictable topology changes. Because nodes in a MANET normally have limited transmission ranges, some nodes cannot communicate directly with each other. Hence, routing paths in mobile ad hoc networks potentially contain multiple hops, and every node in mobile ad hoc networks has the responsibility to act as a router. This paper is a survey of active research work on routing protocols for MANET.

126 citations

Journal ArticleDOI
TL;DR: PFQ-AODV is a flexible, portable, and practicable solution for routing in VANETs that learns the optimal route by employing a fuzzy constraint Q-learning algorithm based on ad hoc on-demand distance vector (A ODV) routing.
Abstract: Vehicular ad hoc networks (VANETs) have been attracting interest for their potential uses in driving assistance, traffic monitoring, and entertainment systems. However, due to vehicle movement, limited wireless resources, and the lossy characteristics of a wireless channel, providing a reliable multihop communication in VANETs is particularly challenging. In this paper, we propose PFQ-AODV, which is a portable VANET routing protocol that learns the optimal route by employing a fuzzy constraint Q-learning algorithm based on ad hoc on-demand distance vector (AODV) routing. The protocol uses fuzzy logic to evaluate whether a wireless link is good or not by considering multiple metrics, which are, specifically, the available bandwidth, link quality, and relative vehicle movement. Based on an evaluation of each wireless link, the proposed protocol learns the best route using the route request (RREQ) messages and hello messages. The protocol can infer vehicle movement based on neighbor information when position information is unavailable. PFQ-AODV is also independent of lower layers. Therefore, PFQ-AODV provides a flexible, portable, and practicable solution for routing in VANETs. We show the effectiveness of the proposed protocol by using both computer simulations and real-world experiments.

125 citations

Proceedings ArticleDOI
24 Apr 2010
TL;DR: A new routing protocol for VANET is designed based on the former results, called CBR (Cluster Based Routing), which has obvious improvement in the average routing overhead and small average end to end delay jitter with the increase of vehicles number.
Abstract: With the development of vehicles and mobile Ad Hoc network technology, the Vehicle Ad hoc Network (VANET) has become an emerging field of study It is a challenging problem for searching and maintaining an effective route for transporting some data information In this paper the authors designed a new routing protocol for VANET based on the former results, called CBR (Cluster Based Routing) Compared with other routing protocols, the new one has obvious improvement in the average routing overhead and small average end to end delay jitter with the increase of vehicles number The real-time traffic applications require data transmission delay time to be relatively stable, small average end to end delay jitter with the increase of vehicles number just meets the real-time application needs

125 citations

Proceedings ArticleDOI
10 Dec 2002
TL;DR: The minimum drain rate (MDR) mechanism which uses a combination of the drain rate with remaining battery capacity to establish routes and can be employed by any existing MANET routing protocol to achieve a dual goal: extend both nodal battery life and connection lifetime.
Abstract: Mobile ad hoc networks' (MANETs) inherent power limitation makes power-awareness a critical requirement for MANET protocols. We propose a new routing metric, the drain rate, which predicts the lifetime of a node as a function of current traffic conditions. We describe the minimum drain rate (MDR) mechanism which uses a combination of the drain rate with remaining battery capacity to establish routes. MDR can be employed by any existing MANET routing protocol to achieve a dual goal: extend both nodal battery life and connection lifetime. Using the ns-2 simulator and the dynamic source routing (DSR) protocol, we compared MDR to the minimum total transmission power routing (MTPR) scheme and the min-max battery cost routing (MM-BCR) scheme and proved that MDR is the best approach to achieve the dual goal.

125 citations

Proceedings ArticleDOI
04 Apr 2005
TL;DR: Flood attack prevention (FAP), a generic defense against the ad hoc flooding attack in mobile ad hoc networks, is developed, composed of neighbor suppression and path cutoff.
Abstract: Mobile ad hoc networks will often be deployed in environments where the nodes of the networks are unattended and have little or no physical protection against tampering. The nodes of mobile ad hoc networks are thus susceptible to compromise. The networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. The new DOS attack, called ad hoc flooding attack, can result in denial of service when used against on-demand routing protocols for mobile ad hoc networks, such as AODV, DSR. The intruder broadcasts mass Route Request packets or sends a lot of attacking DATA packets to exhaust the communication bandwidth and node resource so that the valid communication can not be kept. After analyzed ad hoc flooding attack, we develop flooding attack prevention (FAP), a generic defense against the ad hoc flooding attack in mobile ad hoc networks. The FAP is composed of neighbor suppression and path cutoff. When the intruder broadcasts exceeding packets of route request, the immediate neighbors of the intruder observe a high rate of route request and then they lower the corresponding priority according to the rate of incoming queries. Moreover, not serviced low priority queries are eventually discarded. When the intruder sends many attacking DATA packets to the victim node, the node may cut off the path and does not set up a path with the intruder any more. Mobile ad hoc networks can prevent the ad hoc flooding attack by FAP with little overhead.

125 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
96% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
95% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202261
20215
20202
20192
201856