scispace - formally typeset
Search or ask a question
Topic

Ad hoc wireless distribution service

About: Ad hoc wireless distribution service is a research topic. Over the lifetime, 17734 publications have been published within this topic receiving 488205 citations.


Papers
More filters
Proceedings ArticleDOI
01 Aug 2000
TL;DR: Two new leader election algorithms for mobile ad hoc networks that ensure that eventually each connected component of the topology graph has exactly one leader are presented.
Abstract: We present two new leader election algorithms for mobile ad hoc networks. The algorithms ensure that eventually each connected component of the topology graph has exactly one leader. The algorithms are based on a routing algorithm called TORA [5], which in turn is based on an algorithm by Gafni and Bertsekas [3]. The algorithm require nodes to communicate with only their current neighbors, making it well suited to the ad hoc environment. The first algorithm is for a single topology change and is provided with a proof of correctness. The second algorithm tolerates multiple concurrent topology changes.

369 citations

Proceedings ArticleDOI
01 Oct 2001
TL;DR: In this paper, the authors present the set of factors at the physical layer that are relevant to the performance evaluations of higher layer protocols, such as signal reception, path loss, fading, interference and noise computation, and preamble length.
Abstract: In most studies on mobile ad hoc networks (MANET), simulation models are used for the evaluation of devices and protocols. Typically, such simulations focus on the specific higher layer protocols that are being proposed, and tend to ignore details of models at other layers, particularly the interactions with physical layer models. In this paper, we present the set of factors at the physical layer that are relevant to the performance evaluations of higher layer protocols. Such factors include signal reception, path loss, fading, interference and noise computation, and preamble length. We start the discussion with the comparisions of physical layer models in ns-2 and GloMoSim, two commonly used simulators for MANET studies, and then quantify the impact of the preceding factors under typical scenarios used for the performance evaluation of wireless ad hoc routing protocols. Our experimental results show that the factors at the physical layer not only affect the absolute performance of a protocol, but because their impact on different protocols is non-uniform, it can even change the relative ranking among protocols for the same scenari

367 citations

Proceedings ArticleDOI
11 Jun 2001
TL;DR: This work presents dynamic load-aware routing (DLAR) protocol that considers intermediate node routing loads as the primary route selection metric and describes three DLAR algorithms and shows their effectiveness by presenting and comparing simulation results with an ad hoc routing protocol that uses the shortest paths.
Abstract: Ad hoc networks are deployed in situations where no base station is available and a network has to be built impromptu. Since there is no wired backbone, each host is a router and a packet forwarder. Each node may be mobile, and topology changes frequently and unpredictably. Routing protocol development has received much attention because mobility management and efficient bandwidth and power usage are critical in ad hoc networks. No existing protocol however, considers the load as the main route selection criteria. This routing philosophy can lead to network congestion and create bottlenecks. We present dynamic load-aware routing (DLAR) protocol that considers intermediate node routing loads as the primary route selection metric. The protocol also monitors the congestion status of active routes and reconstructs the path when nodes of the route have their interface queue overloaded. We describe three DLAR algorithms and show their effectiveness by presenting and comparing simulation results with an ad hoc routing protocol that uses the shortest paths.

366 citations

Journal ArticleDOI
TL;DR: This paper considers the design of powersaving protocols for mobile ad hoc networks (MANETs) that allow mobile hosts to switch to a low-power sleep mode, and proposes three power management protocols, namely dominating-awake-interval, periodically-fully-aw Wake-Interval, and quorum-based protocols, which are directly applicable to IEEE 802.11-based MANETs.

365 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
96% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
95% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202261
20215
20202
20192
201856