scispace - formally typeset
Search or ask a question
Topic

Ad hoc wireless distribution service

About: Ad hoc wireless distribution service is a research topic. Over the lifetime, 17734 publications have been published within this topic receiving 488205 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper surveys the existing solutions of the black hole attack, discusses the state-of-the-art routing methods, and analyzes the categories of these solutions to provide a comparison table.
Abstract: The black hole attack is one of the well-known security threats in wireless mobile ad hoc networks. The intruders utilize the loophole to carry out their malicious behaviors because the route discovery process is necessary and inevitable. Many researchers have conducted different detection techniques to propose different types of detection schemes. In this paper, we survey the existing solutions and discuss the state-of-the-art routing methods. We not only classify these proposals into single black hole attack and collaborative black hole attack but also analyze the categories of these solutions and provide a comparison table. We expect to furnish more researchers with a detailed work in anticipation.

261 citations

Patent
05 Oct 2006
TL;DR: In this article, a peer-to-peer call in an ad hoc wireless network, a wireless device performs discovery of a target wireless device, performs authentication of the target wireless devices and generates a session key (e.g., using a pre-shared key or a certificate provisioned on the wireless device).
Abstract: For a peer-to-peer call in an ad hoc wireless network, a wireless device performs discovery of a target wireless device, performs authentication of the target wireless device and generates a session key (e.g., using a pre-shared key or a certificate provisioned on the wireless device), forms an ad hoc wireless network with the target wireless device, and communicates peer-to-peer with the target wireless device via the ad hoc wireless network. The wireless device may perform discovery with a list of identifiers for wireless devices designated to communicate with this wireless device. The wireless device may derive a service set identifier (SSID) used to identify the ad hoc wireless network based on its user-specific identifier (e.g., its phone number) and/or a user-specific identifier for the target wireless device. The wireless device may also performs IP address discovery using the user-specific identifier for the target wireless device.

261 citations

Proceedings ArticleDOI
20 Mar 2003
TL;DR: This paper presents a hybrid scheme that uses techniques such as TTL scoping of agent advertisements, eavesdropping and caching agent and advertisements to combine the advantages of proactive and reactive approaches to providing connectivity.
Abstract: Mobile ad hoc networks are autonomous, infrastructureless networks that support multihop communication through IP routing. This paper examines the use of mobile IP in order to provide global Internet connectivity to ad hoc networks that use an on-demand routing protocol. We present a hybrid scheme that uses techniques such as TTL scoping of agent advertisements, eavesdropping and caching agent and advertisements to combine the advantages of proactive and reactive approaches to providing connectivity. We present simulation results to show that our approach achieves excellent connectivity while keeping overhead costs low.

261 citations

Journal ArticleDOI
TL;DR: A prediction-based routing (PBR) protocol that is specifically tailored to the mobile gateway scenario and takes advantage of the predictable mobility pattern of vehicles on highways, which uses predicted route lifetimes to preemptively create new routes before existing ones fail.
Abstract: Development in short-range wireless LAN (WLAN) and long-range wireless WAN (WWAN) technologies have motivated recent efforts to integrate the two. This creates new application scenarios that were not possible before. Vehicles with only WLAN radios can use other vehicles that have both WLAN and WWAN radios as mobile gateways and connect to the Internet while on the road. The most difficult challenge in the scenario is to deal with frequent route breakages due to dynamic mobility of vehicles on the road. Existing routing protocols that are widely used for mobile ad hoc networks are reactive in nature and wait until existing routes break before constructing new routes. The frequent route failures result in a significant amount of time needed for repairing existing routes or reconstructing new routes. In spite of the dynamic mobility, the motion of vehicles on highways is quite predictable compared to other mobility patterns for wireless ad hoc networks, with location and velocity information readily available. This can be exploited to predict how long a route will last between a vehicle requiring Internet connectivity and the gateway that provides a route to the Internet. Successful prediction of route lifetimes can significantly reduce the number of route failures. In this paper, we introduce a prediction-based routing (PBR) protocol that is specifically tailored to the mobile gateway scenario and takes advantage of the predictable mobility pattern of vehicles on highways. The protocol uses predicted route lifetimes to preemptively create new routes before existing ones fail. We study the performance of this protocol through simulation and demonstrate significant reductions in route failures compared to protocols that do not use preemptive routing. Moreover, we find that the overhead of preemptive routing is kept in check due to the ability of PBR to predict route lifetimes.

261 citations

Proceedings ArticleDOI
24 Jun 2007
TL;DR: This work proposes an inter-vehicle ad-hoc routing protocol called GyTAR (improved greedy traffic aware routing protocol) suitable for city environments and shows significant performance improvement in terms of packet delivery ratio, end-to-end delay, and routing overhead.
Abstract: The fundamental component for the success of VANET (vehicular ad hoc networks) applications is routing since it must efficiently handle rapid topology changes and a fragmented network. Current MANET (mobile ad hoc networks) routing protocols fail to fully address these specific needs especially in a city environments (nodes distribution, constrained but high mobility patterns, signal transmissions blocked by obstacles, etc.). In our current work, we propose an inter-vehicle ad-hoc routing protocol called GyTAR (improved greedy traffic aware routing protocol) suitable for city environments. GyTAR consists of two modules: (i) dynamic selection of the junctions through which a packet must pass to reach its destination, and (ii) an improved greedy strategy used to forward packets between two junctions. In this paper, we give detailed description of our approach and present its added value compared to other existing vehicular routing protocols. Simulation results show significant performance improvement in terms of packet delivery ratio, end-to-end delay, and routing overhead.

260 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
96% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
95% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202261
20215
20202
20192
201856