scispace - formally typeset
Search or ask a question
Topic

AdaBoost

About: AdaBoost is a research topic. Over the lifetime, 6254 publications have been published within this topic receiving 257741 citations.


Papers
More filters
Proceedings ArticleDOI
17 Jun 2006
TL;DR: This work integrates the cascade-of-rejectors approach with the Histograms of Oriented Gradients features to achieve a fast and accurate human detection system that can process 5 to 30 frames per second depending on the density in which the image is scanned, while maintaining an accuracy level similar to existing methods.
Abstract: We integrate the cascade-of-rejectors approach with the Histograms of Oriented Gradients (HoG) features to achieve a fast and accurate human detection system. The features used in our system are HoGs of variable-size blocks that capture salient features of humans automatically. Using AdaBoost for feature selection, we identify the appropriate set of blocks, from a large set of possible blocks. In our system, we use the integral image representation and a rejection cascade which significantly speed up the computation. For a 320 × 280 image, the system can process 5 to 30 frames per second depending on the density in which we scan the image, while maintaining an accuracy level similar to existing methods.

1,626 citations

Journal ArticleDOI
TL;DR: A new algorithm is proposed that naturally extends the original AdaBoost algorithm to the multiclass case without reducing it to multiple two-class problems and is extremely easy to implement and is highly competitive with the best currently available multi-class classification methods.
Abstract: Boosting has been a very successful technique for solving the two-class classification problem. In going from two-class to multi-class classification, most algorithms have been restricted to reducing the multi-class classification problem to multiple two-class problems. In this paper, we propose a new algorithm that naturally extends the original AdaBoost algorithm to the multiclass case without reducing it to multiple two-class problems. Similar to AdaBoost in the twoclass case, this new algorithm combines weak classifiers and only requires the performance of each weak classifier be better than random guessing (rather than 1/2). We further provide a statistical justification for the new algorithm using a novel multi-class exponential loss function and forward stage-wise additive modeling. As shown in the paper, the new algorithm is extremely easy to implement and is highly competitive with the best currently available multi-class classification methods.

1,572 citations

Journal ArticleDOI
01 Jan 2010
TL;DR: This paper presents a new hybrid sampling/boosting algorithm, called RUSBoost, for learning from skewed training data, which provides a simpler and faster alternative to SMOTEBoost, which is another algorithm that combines boosting and data sampling.
Abstract: Class imbalance is a problem that is common to many application domains. When examples of one class in a training data set vastly outnumber examples of the other class(es), traditional data mining algorithms tend to create suboptimal classification models. Several techniques have been used to alleviate the problem of class imbalance, including data sampling and boosting. In this paper, we present a new hybrid sampling/boosting algorithm, called RUSBoost, for learning from skewed training data. This algorithm provides a simpler and faster alternative to SMOTEBoost, which is another algorithm that combines boosting and data sampling. This paper evaluates the performances of RUSBoost and SMOTEBoost, as well as their individual components (random undersampling, synthetic minority oversampling technique, and AdaBoost). We conduct experiments using 15 data sets from various application domains, four base learners, and four evaluation metrics. RUSBoost and SMOTEBoost both outperform the other procedures, and RUSBoost performs comparably to (and often better than) SMOTEBoost while being a simpler and faster technique. Given these experimental results, we highly recommend RUSBoost as an attractive alternative for improving the classification performance of learners built using imbalanced data.

1,448 citations

Journal ArticleDOI
TL;DR: It is found that ADABOOST asymptotically achieves a hard margin distribution, i.e. the algorithm concentrates its resources on a few hard-to-learn patterns that are interestingly very similar to Support Vectors.
Abstract: Recently ensemble methods like ADABOOST have been applied successfully in many problems, while seemingly defying the problems of overfitting. ADABOOST rarely overfits in the low noise regime, however, we show that it clearly does so for higher noise levels. Central to the understanding of this fact is the margin distribution. ADABOOST can be viewed as a constraint gradient descent in an error function with respect to the margin. We find that ADABOOST asymptotically achieves a hard margin distribution, i.e. the algorithm concentrates its resources on a few hard-to-learn patterns that are interestingly very similar to Support Vectors. A hard margin is clearly a sub-optimal strategy in the noisy case, and regularization, in our case a “mistrust” in the data, must be introduced in the algorithm to alleviate the distortions that single difficult patterns (e.g. outliers) can cause to the margin distribution. We propose several regularization methods and generalizations of the original ADABOOST algorithm to achieve a soft margin. In particular we suggest (1) regularized ADABOOSTREG where the gradient decent is done directly with respect to the soft margin and (2) regularized linear and quadratic programming (LP/QP-) ADABOOST, where the soft margin is attained by introducing slack variables. Extensive simulations demonstrate that the proposed regularized ADABOOST-type algorithms are useful and yield competitive results for noisy data.

1,367 citations

Proceedings Article
Robert E. Schapire1
31 Jul 1999
TL;DR: The boosting algorithm AdaBoost is introduced, and the underlying theory of boosting is explained, including an explanation of why boosting often does not suffer from overfitting.
Abstract: Boosting is a general method for improving the accuracy of any given learning algorithm. This short paper introduces the boosting algorithm AdaBoost, and explains the underlying theory of boosting, including an explanation of why boosting often does not suffer from overfitting. Some examples of recent applications of boosting are also described.

1,339 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
93% related
Feature (computer vision)
128.2K papers, 1.7M citations
92% related
Deep learning
79.8K papers, 2.1M citations
92% related
Convolutional neural network
74.7K papers, 2M citations
92% related
Artificial neural network
207K papers, 4.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023490
20221,088
2021473
2020410
2019436
2018369