scispace - formally typeset
Search or ask a question
Topic

Adaptive algorithm

About: Adaptive algorithm is a research topic. Over the lifetime, 11414 publications have been published within this topic receiving 216621 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a self- Adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions.
Abstract: Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially depends on appropriately choosing trial vector generation strategies and their associated control parameter values. Employing a trial-and-error scheme to search for the most suitable strategy and its associated parameter settings requires high computational costs. Moreover, at different stages of evolution, different strategies coupled with different parameter settings may be required in order to achieve the best performance. In this paper, we propose a self-adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions. Consequently, a more suitable generation strategy along with its parameter settings can be determined adaptively to match different phases of the search process/evolution. The performance of the SaDE algorithm is extensively evaluated (using codes available from P. N. Suganthan) on a suite of 26 bound-constrained numerical optimization problems and compares favorably with the conventional DE and several state-of-the-art parameter adaptive DE variants.

3,085 citations

Journal ArticleDOI
TL;DR: The results show that the algorithm with self-adaptive control parameter settings is better than, or at least comparable to, the standard DE algorithm and evolutionary algorithms from literature when considering the quality of the solutions obtained.
Abstract: We describe an efficient technique for adapting control parameter settings associated with differential evolution (DE). The DE algorithm has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters, which are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE. We present an algorithm-a new version of the DE algorithm-for obtaining self-adaptive control parameter settings that show good performance on numerical benchmark problems. The results show that our algorithm with self-adaptive control parameter settings is better than, or at least comparable to, the standard DE algorithm and evolutionary algorithms from literature when considering the quality of the solutions obtained

2,820 citations

Journal ArticleDOI
TL;DR: Simulation results show that JADE is better than, or at least comparable to, other classic or adaptive DE algorithms, the canonical particle swarm optimization, and other evolutionary algorithms from the literature in terms of convergence performance for a set of 20 benchmark problems.
Abstract: A new differential evolution (DE) algorithm, JADE, is proposed to improve optimization performance by implementing a new mutation strategy ldquoDE/current-to-p bestrdquo with optional external archive and updating control parameters in an adaptive manner. The DE/current-to-pbest is a generalization of the classic ldquoDE/current-to-best,rdquo while the optional archive operation utilizes historical data to provide information of progress direction. Both operations diversify the population and improve the convergence performance. The parameter adaptation automatically updates the control parameters to appropriate values and avoids a user's prior knowledge of the relationship between the parameter settings and the characteristics of optimization problems. It is thus helpful to improve the robustness of the algorithm. Simulation results show that JADE is better than, or at least comparable to, other classic or adaptive DE algorithms, the canonical particle swarm optimization, and other evolutionary algorithms from the literature in terms of convergence performance for a set of 20 benchmark problems. JADE with an external archive shows promising results for relatively high dimensional problems. In addition, it clearly shows that there is no fixed control parameter setting suitable for various problems or even at different optimization stages of a single problem.

2,778 citations

Journal ArticleDOI
TL;DR: A new concept, that of INdependent Components Analysis (INCA), more powerful than the classical Principal components Analysis (in decision tasks) emerges from this work.

2,583 citations

Journal ArticleDOI
TL;DR: An adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel is developed and a new hybrid analog/digital precoding algorithm is proposed that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions.
Abstract: Millimeter wave (mmWave) cellular systems will enable gigabit-per-second data rates thanks to the large bandwidth available at mmWave frequencies. To realize sufficient link margin, mmWave systems will employ directional beamforming with large antenna arrays at both the transmitter and receiver. Due to the high cost and power consumption of gigasample mixed-signal devices, mmWave precoding will likely be divided among the analog and digital domains. The large number of antennas and the presence of analog beamforming requires the development of mmWave-specific channel estimation and precoding algorithms. This paper develops an adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel. To enable the efficient operation of this algorithm, a novel hierarchical multi-resolution codebook is designed to construct training beamforming vectors with different beamwidths. For single-path channels, an upper bound on the estimation error probability using the proposed algorithm is derived, and some insights into the efficient allocation of the training power among the adaptive stages of the algorithm are obtained. The adaptive channel estimation algorithm is then extended to the multi-path case relying on the sparse nature of the channel. Using the estimated channel, this paper proposes a new hybrid analog/digital precoding algorithm that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions. Simulation results show that the proposed low-complexity channel estimation algorithm achieves comparable precoding gains compared to exhaustive channel training algorithms. The results illustrate that the proposed channel estimation and precoding algorithms can approach the coverage probability achieved by perfect channel knowledge even in the presence of interference.

2,424 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
91% related
Feature extraction
111.8K papers, 2.1M citations
88% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Artificial neural network
207K papers, 4.5M citations
87% related
Network packet
159.7K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231
202217
2021293
2020320
2019404
2018390