scispace - formally typeset
Search or ask a question
Topic

Adaptive beamformer

About: Adaptive beamformer is a research topic. Over the lifetime, 4934 publications have been published within this topic receiving 93100 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work considers a wireless communication system employing digital linear modulated signals and an innovative receiver that includes a time-modulated array and a maximum ratio combining subsystem that is adapted to optimally exploit the multipath channel angular diversity.
Abstract: Diversity occurs whenever several copies of the same transmitted signal arrive at a receiver. Such a situation allows for improving the performance of a wireless communication system transmitting over a radio channel without increasing the transmit power. Previous works have shown that time-modulated arrays are capable of faithfully acquiring digital signals while exploiting angular diversity through the adaptive beamforming of their harmonic patterns. In this work, we take a step further and consider a wireless communication system employing digital linear modulated signals and an innovative receiver that includes a time-modulated array and a maximum ratio combining subsystem. The maximum ratio combiner is adapted to optimally exploit the multipath channel angular diversity. The performance of the system is analyzed in terms of two metrics: the signal-to-noise ratio and the symbol error rate. The results are compared to those achieved with other receivers that include conventional antenna arrays, exhibiting the time-modulated array solution a good tradeoff between performance and hardware complexity.

49 citations

Patent
16 Jan 1986
TL;DR: In this paper, an adaptive array is used to reduce multipath in communication receivers in a signal environment in which the directions of arrival and the time of arrival of the signal of interest and the unwanted multipath are unknown.
Abstract: Signal processing that reduces multipath in communication receivers is implemented with an adaptive array. The invention address a signal environment in which the directions of arrival and the time of arrival of the signal of interest and the unwanted multipath are unknown. A reference signal is generated by amplitude limiting the adaptive array output signal. The system uses the strongest received signal as the signal of interest and rejects the others by placing an antenna pattern null in their direction of arrival.

48 citations

Journal ArticleDOI
TL;DR: In this article, the performance of an LMS adaptive array with a frequency hopped, spread spectrum desired signal and a CW interference signal is examined, and typical curves of the desired signal modulation and the time-varying SINR at the array output are presented.
Abstract: The performance of an LMS adaptive array with a frequency hopped, spread spectrum desired signal and a CW interference signal is examined. It is shown that frequency hopping has several effects on an adaptive array. It causes the array to modulate both the amplitude and the phase of the received signal. Also, it causes the array output SINR (signal-to-interference-plus-noise ratio) to vary with time and thus increases the bit error probability for the received signal. Typical curves of the desired signal modulation and the time-varying SINR at the array output are presented. It is shown how the array performance depends on hopping frequency, frequency jump size, interference frequency, signal arrival angles, and signal powers.

48 citations

Journal ArticleDOI
TL;DR: The proposed Joint Transmitting-Receiving adaptive beamforming scheme has better performance on both point targets and cysts than the existing plane wave compounding approach and has good robustness against sound velocity errors.
Abstract: Plane wave compounding is a useful mode for ultrasound imaging because it can make a good compromise between imaging quality and frame rate. It is also useful for broad view ultrasound imaging. Traditional coherent plane wave compounding coherently sums the echo data of different steered transmitting waves as the output. The data correlation information of different emissions is not considered. Therefore, some adaptive techniques can be introduced into the compounding procedure. In this paper, we propose a Joint Transmitting-Receiving (JTR) adaptive beamforming scheme for plane wave compounding. Unlike traditional adaptive beamformers, the proposed beamforming scheme is designed for the 2-D data set obtained from multiple plane wave firings. It calculates both the transmitting aperture weights and the receiving aperture weights and then combines them into a 2-D adaptive weight function for compounding. Experiments are conducted on both simulated and phantom data. Results show that the proposed scheme has better performance on both point targets and cysts than the existing plane wave compounding approach. Because of the adaptive process in both apertures for compounding, an improved resolution is observed in both simulation and phantom studies. When the eigenanalysis is introduced, a contrast enhancement is achieved. For the simulated cyst, a contrast ratio (CR) improvement of 48% is achieved compared with the traditional plane wave compounding. For the phantom cyst, this improvement is 213.8%. The proposed scheme also has good robustness against sound velocity errors. Therefore, it is effective in enhancing the coherent plane wave compounding quality.

48 citations

Journal ArticleDOI
TL;DR: It is shown that the proposed system can achieve better performance than an adaptive antenna-arrays-based OFDM system without dynamic spatial subchannel allocation over multipath fading channels and is far less susceptible to feedback delay in rapid time-varying channels and a little more sensitive to channel estimation errors.
Abstract: Orthogonal frequency division multiplexing (OFDM) has been widely regarded as an effective modulation technique for mitigating the effects of intersymbol interference in a frequency selective fading channel and for providing reliable high-data-rate transmission over wireless links. Adaptive antenna arrays at the base and mobile stations can achieve further increases in system's capacity and bandwidth efficiency, as well as in quality-of-service improvement in conventional OFDM systems. The conventional adaptive antenna-arrays-based OFDM systems always use the subcarriers characterized by the largest eigenvalues to transmit the OFDM block symbols. And in contrast to previous work, we propose dynamic spatial subchannel allocation with adaptive beamforming for broadband OFDM wireless transmission systems. The proposed system adaptively selects the eigenvectors associated with the relatively large spatial subchannel eigenvalues to generate the beamforming weights at the mobile and base stations and then dynamically assigns the corresponding best spatial subchannels to transmit the OFDM block symbols. It is shown that the proposed system can achieve better performance than an adaptive antenna-arrays-based OFDM system without dynamic spatial subchannel allocation over multipath fading channels. Simulation results also reveal that the proposed system is far less susceptible to feedback delay in rapid time-varying channels and a little more sensitive to channel estimation errors than conventional adaptive antenna-arrays-based OFDM systems. The performance of the proposed system combined with adaptive modulation is also considered.

48 citations


Network Information
Related Topics (5)
Communications system
88.1K papers, 1M citations
85% related
Wireless
133.4K papers, 1.9M citations
84% related
Fading
55.4K papers, 1M citations
83% related
Feature extraction
111.8K papers, 2.1M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202371
2022168
2021133
2020154
2019198
2018154