scispace - formally typeset
Search or ask a question
Topic

Adaptive neuro fuzzy inference system

About: Adaptive neuro fuzzy inference system is a research topic. Over the lifetime, 23244 publications have been published within this topic receiving 428882 citations.


Papers
More filters
Proceedings ArticleDOI
27 May 2001
TL;DR: The experimental results illustrate that the fuzzy adaptive PSO is a promising optimization method, which is especially useful for optimization problems with a dynamic environment.
Abstract: A fuzzy system is implemented to dynamically adapt the inertia weight of the particle swarm optimization algorithm (PSO). Three benchmark functions with asymmetric initial range settings are selected as the test functions. The same fuzzy system has been applied to all three test functions with different dimensions. The experimental results illustrate that the fuzzy adaptive PSO is a promising optimization method, which is especially useful for optimization problems with a dynamic environment.

1,132 citations

Journal ArticleDOI
TL;DR: This method allows a formal, fuzzy representation to be built for verbal decision algorithms and can have an effective computer representation.

990 citations

Journal ArticleDOI
TL;DR: The generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; and learns to produce real-valued control actions.
Abstract: A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing. >

987 citations

Book
01 Aug 1996
TL;DR: A fuzzy algorithm is introduced which, though fuzzy rather than precise in nature, may eventually prove to be of use in a wide variety of problems relating to information processing, control, pattern recognition, system identification, artificial intelligence and, more generally, decision processes involving incomplete or uncertain data.
Abstract: Unlike most papers in Information and Control, our note contains no theorems and no proofs. Essentially, its purpose is to introduce a basic concept which, though fuzzy rather than precise in nature, may eventually prove to be of use in a wide variety of problems relating to information processing, control, pattern recognition, system identification, artificial intelligence and, more generally, decision processes involving incomplete or uncertain data. The concept in question will be called a fuzzy algorithm because it may be viewed as a generalization, through the process of fuzzification, of the conventional (nonfuzzy) conception of an algorithm. More specifically, unlike a nonfuzzy deterministic or nondeterministic algorithm (Floyd, 1967), a fuzzy algorithm may contain fuzzy statements, that is, statements containing names of fuzzy sets (Zadeh, 1965), by which we mean classes in which there may be grades of membership intermediate between full membership and nonmembership. To illustrate, fuzzy algorithms may contain fuzzy instructions such as:

971 citations

Journal ArticleDOI
TL;DR: It is shown that, under some minor restrictions, the functional behavior of radial basis function networks (RBFNs) and that of fuzzy inference systems are actually equivalent.
Abstract: It is shown that, under some minor restrictions, the functional behavior of radial basis function networks (RBFNs) and that of fuzzy inference systems are actually equivalent. This functional equivalence makes it possible to apply what has been discovered (learning rule, representational power, etc.) for one of the models to the other, and vice versa. It is of interest to observe that two models stemming from different origins turn out to be functionally equivalent. >

918 citations


Network Information
Related Topics (5)
Fuzzy logic
151.2K papers, 2.3M citations
95% related
Artificial neural network
207K papers, 4.5M citations
90% related
Support vector machine
73.6K papers, 1.7M citations
88% related
Control theory
299.6K papers, 3.1M citations
87% related
Feature extraction
111.8K papers, 2.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023530
20221,216
2021748
2020744
2019775
2018789