scispace - formally typeset
Search or ask a question
Topic

Adaptive optics

About: Adaptive optics is a research topic. Over the lifetime, 13352 publications have been published within this topic receiving 173364 citations. The topic is also known as: AO & Adaptive optics.


Papers
More filters
01 Jan 1992
TL;DR: Sign Conventions Aberration Free Image Spherical Wavefront, Defocus, and Lateral Shift Angular, Transverse, and Longitudinal Aberration Seidel Aberrations A. Spherical Aberration B. Coma C. Astigmatism D. Field Curvature E. Distortion Zernike Polynomials and Third-Order Aberrations as mentioned in this paper.
Abstract: VIII. IX. X. XI. XII. Sign Conventions Aberration-Free Image Spherical Wavefront, Defocus, and Lateral Shift Angular, Transverse, and Longitudinal Aberration Seidel Aberrations A. Spherical Aberration B. Coma C. Astigmatism D. Field Curvature E. Distortion Zernike Polynomials Relationship between Zernike Polynomials and Third-Order Aberrations Peak-to-Valley and RMS Wavefront Aberration Strehl Ratio Chromatic Aberrations Aberrations Introduced by Plane Parallel Plates Aberrations of Simple Thin Lenses 2 4 9 12 15 18 22 24 26 28 28

447 citations

Proceedings ArticleDOI
TL;DR: SINFONI as mentioned in this paper is an adaptive optics assisted near-infrared integral field spectrometer for the ESO VLT, which provides simultaneous spectroscopy of 32 x 32 spatial pixels, and a spectral resolving power of up to 3300.
Abstract: SINFONI is an adaptive optics assisted near-infrared integral field spectrometer for the ESO VLT. The Adaptive OPtics Module (built by the ESO Adaptive Optics Group) is a 60-elements curvature-sensor based system, designed for operations with natural or sodium laser guide stars. The near-infrared integral field spectrometer SPIFFI (built by the Infrared Group of MPE) provides simultaneous spectroscopy of 32 x 32 spatial pixels, and a spectral resolving power of up to 3300. The adaptive optics module is in the phase of integration; the spectrometer is presented tested in the laboratory. We provide an overview of the project, with particular emphasis on the problems encountered in designing and building an adaptive optics assisted spectrometer.

445 citations

Journal ArticleDOI
TL;DR: It is shown that adaptive optics has led to important advances in the authors' understanding of a multitude of astrophysical processes, and how the requirements from science applications are now driving the development of the next generation of novel adaptive optics techniques.
Abstract: Adaptive Optics is a prime example of how progress in observational astronomy can be driven by technological developments. At many observatories it is now considered to be part of a standard instrumentation suite, enabling ground-based telescopes to reach the diffraction limit and thus providing spatial resolution superior to that achievable from space with current or planned satellites. In this review we consider adaptive optics from the astrophysical perspective. We show that adaptive optics has led to important advances in our understanding of a multitude of astrophysical processes, and describe how the requirements from science applications are now driving the development of the next generation of novel adaptive optics techniques.

432 citations

Journal ArticleDOI
Jean-Luc Beuzit, Arthur Vigan, David Mouillet, Kjetil Dohlen, Raffaele Gratton, Anthony Boccaletti, Jean-François Sauvage, H. M. Schmid, Maud Langlois, Cyril Petit, Andrea Baruffolo, M. Feldt, Julien Milli, Zahed Wahhaj, L. Abe, U. Anselmi, J. Antichi, Rudy Barette, J. Baudrand, Pierre Baudoz, Andreas Bazzon, P. Bernardi, P. Blanchard, R. Brast, Pietro Bruno, Tristan Buey, Marcel Carbillet, M. Carle, Enrico Cascone, F. Chapron, Gael Chauvin, Julien Charton, Riccardo Claudi, Anne Costille, V. De Caprio, A. Delboulbe, Silvano Desidera, Carsten Dominik, Mark Downing, O. Dupuis, Christophe Fabron, D. Fantinel, G. Farisato, Philippe Feautrier, Enrico Fedrigo, T. Fusco, P. Gigan, Christian Ginski, Julien Girard, Enrico Giro, D. Gisler, L. Gluck, Cecile Gry, Th. Henning, N. Hubin, Emmanuel Hugot, S. Incorvaia, M. Jaquet, M. Kasper, Eric Lagadec, Anne-Marie Lagrange, H. Le Coroller, D. Le Mignant, B. Le Ruyet, G. Lessio, J. L. Lizon, M. Llored, Lars Lundin, F. Madec, Yves Magnard, M. Marteaud, P. Martinez, D. Maurel, Francois Menard, Dino Mesa, O. Möller-Nilsson, Thibaut Moulin, C. Moutou, Alain Origne, J. Parisot, A. Pavlov, D. Perret, J. Pragt, Pascal Puget, Patrick Rabou, Juan-Luis Ramos, Jean Michel Reess, F. Rigal, Sylvain Rochat, Ronald Roelfsema, G. Rousset, A. Roux, Michel Saisse, Bernardo Salasnich, E. Sant'Ambrogio, Salvo Scuderi, D. Segransan, Arnaud Sevin, Ralf Siebenmorgen, Christian Soenke, Eric Stadler, Marcos Suarez, Didier Tiphene, Massimo Turatto, Stéphane Udry, Farrokh Vakili, L. B. F. M. Waters, L. Weber, Francois Wildi, Gérard Zins, Alice Zurlo 
TL;DR: The Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) was designed and built for the ESO Very Large Telescope (VLT) in Chile as mentioned in this paper.
Abstract: Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.

414 citations

Journal ArticleDOI
TL;DR: The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument as discussed by the authors is a multiband instrument which makes use of light from 600 to 2500 nm, allowing for coronagraphic direct exoplanet imaging of the inner 3λ/D from the stellar host.
Abstract: The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multiband instrument which makes use of light from 600 to 2500 nm, allowing for coronagraphic direct exoplanet imaging of the inner 3λ/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well-corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase-induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1λ/D. Noncommon path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid-2016) can take deeper exposures and/or perform angular, spectral, and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable subdiffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.

414 citations


Network Information
Related Topics (5)
Interferometry
58K papers, 824.8K citations
86% related
Lens (optics)
156.4K papers, 1.2M citations
84% related
Wavelength
53.9K papers, 806.8K citations
84% related
Optical fiber
167K papers, 1.8M citations
81% related
Laser
353.1K papers, 4.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023204
2022791
2021355
2020517
2019445
2018615