scispace - formally typeset
Search or ask a question
Topic

Added mass

About: Added mass is a research topic. Over the lifetime, 2849 publications have been published within this topic receiving 47899 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a free-falling rigid sphere in a quiescent incompressible newtonian fluid, placed in an oscillating frame, is analyzed and compared with those obtained from theoretical approaches.
Abstract: The present work presents an experimental study on a free-falling rigid sphere in a quiescent incompressible newtonian fluid, placed in an oscillating frame. The goal of this investigation is to examine the effect of the history force acting on the sphere at small Reynolds numbers (Re≤2.5) and finite Strouhal numbers (1≤Sl≤20). The particle trajectory is measured by using a high-speed video camera and modern techniques of image processing. The average terminal velocity, the oscillation magnitude, and the phase shift with the oscillating frame are measured and compared with those obtained from theoretical approaches. The comparison is made by solving the equation of motion of the sphere with and without the history force. In addition to the significant role that this force plays in the momentum balance, it was found that the correction of the added mass force and the history force by the empirical coefficients of Odar and Hamilton (J Fluid Mech 18:302–314, 1964; J Fluid Mech 25:591–592, 1966) are not necessary in our Re and Sl ranges. The added mass is the same as that obtained by the potential flow theory and the history force is well predicted by the Basset expression (Treatise on hydrodynamics, 1888).

25 citations

Journal ArticleDOI
TL;DR: In this article, a boundary integral equation method was used in conjunction with the method of images, in order to investigate the dynamic behavior of fluid-structure structures in terms of the wet frequency and associated mode shapes.

25 citations

Journal ArticleDOI
TL;DR: In this article, the rotational inertia double tuned mass damper (RIDTMD) was used for damping in-plane vibrations of a floating offshore wind turbine (FOWT).

25 citations

Journal ArticleDOI
TL;DR: In this article, a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain is presented, which can be applied to the structure embedded in ground as well as on ground.
Abstract: This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

25 citations

Journal ArticleDOI
TL;DR: In this paper, a time-domain higher-order boundary element method for seakeeping analyses in the framework of linear potential theory is proposed, in which an artificial damping beach is installed at an outer portion of the free surface except the downstream side for satisfying the radiation condition.
Abstract: A time-domain higher-order boundary element method for seakeeping analyses in the framework of linear potential theory is newly developed. Ship waves generated by two modified Wigley models advancing at a constant forward speed in calm water or incident waves and the resultant radiation and diffraction forces are computed to validate this code. A rectangular computational domain moving with the same forward speed as the ship is introduced, in which an artificial damping beach is installed at an outer portion of the free surface except the downstream side for satisfying the radiation condition. The velocity potential on the ship hull and the normal velocity on the free surface are calculated directly by solving the boundary integral equation. An explicit time-marching scheme is employed for updating both kinematic and dynamic free-surface boundary conditions, with an embedding of a second-order upwind difference scheme for the derivative in the x-direction to stabilize the calculation. Extensive results including the exciting forces, added mass and damping coefficients, wave profiles, and wave patterns for blunt Wigley and slender Wigley hulls with forward speed are presented to validate the efficiency of the proposed 3D time-domain approach. The corresponding physical tests of the radiation and diffraction problems in a towing tank are also carried out. Computed numerical results show good agreement with the corresponding experimental data and other numerical solutions.

25 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
81% related
Boundary layer
64.9K papers, 1.4M citations
79% related
Turbulence
112.1K papers, 2.7M citations
78% related
Finite element method
178.6K papers, 3M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
2022133
2021111
2020116
2019129
2018124