scispace - formally typeset
Search or ask a question
Topic

Added mass

About: Added mass is a research topic. Over the lifetime, 2849 publications have been published within this topic receiving 47899 citations.


Papers
More filters
Journal ArticleDOI
26 Nov 2012
TL;DR: In this paper, a reduced scale model of a pump-turbine was tested outside and inside the casing with different boundary conditions and the response was measured with miniature accelerometers located in several positions inside the runner.
Abstract: When in operation, pump-turbine runners have to withstand large pressure pulsations generated by the rotor-stator interaction. The analysis of the dynamic behavior of these structures is necessary to avoid damage. For this analysis a realistic model of the runner is necessary. When the runner is submerged in water and inside the casing, its dynamic response is greatly affected. The added mass effects of the surrounding fluid and the proximity of the head-cover and bottom-cover may reduce the natural frequencies. The frequency reduction produced by the added mass effects and the influence of the boundary conditions has to be known for a safe design of the runner. In this paper an experimental investigation on the dynamic response of a model runner is presented. A reduced scale model of a pump-turbine was tested outside and inside the casing with different boundary conditions. For the excitation of the runner at different frequencies piezoelectric patches were used. The response was measured with miniature accelerometers located in several positions inside the runner. From the measurements the natural frequencies and mode-shapes of the runner were calculated using EMA. The influence of the added mass and of the boundary conditions is presented and discussed.

22 citations

01 Nov 2004
TL;DR: In this article, the authors investigate the dynamics of a freely rising and falling cylinder and find that if the mass ratio (where m* = cylinder mass/displaced fluid mass) is greater than a critical value, m*crit = 0.545, the body falls or rises with a rectilinear trajectory.
Abstract: In this study, we investigate the dynamics of a freely rising and falling cylinder. This is, in essence, a vortex-induced vibration (VIV) system comprising both transverse (Y) and streamwise (X) degrees-of-freedom (d.o.f.), but with zero spring stiffness and zero damping. This problem represents a limiting case among studies in VIV, and is an extension of recent research of elastically mounted bodies having very low spring stiffness, as well as bodies with very low mass and damping. We find that if the mass ratio (where m* = cylinder mass/displaced fluid mass) is greater than a critical value, m*crit = 0.545, the body falls or rises with a rectilinear trajectory. As the mass ratio is reduced below m*crit = 0.545, the cylinder suddenly begins to vibrate vigorously and periodically, with a 2P mode of vortex formation, as reported in the preliminary study of Horowitz & Williamson (J. Fluids Struct. vol. 22, 2006, pp. 837–843). The similarity in critical mass between freely rising and elastically mounted bodies is unexpected, as it is known that the addition of streamwise vibration can markedly affect the response and vortex formation in elastically mounted systems, which would be expected to modify the critical mass. However, we show in this paper that the similarity in vortex formation mode (2P) between the freely rising body and the elastically mounted counterpart is consistent with a comparable phase of vortex dynamics, strength of vortices, amplitudes and frequencies of motion and effective added mass (CEA). All of these similarities result in comparable values of critical mass. The principal fact that the 2P mode is observed for the freely rising body is an interesting and consistent result; based on the previous VIV measurements, this is the only mode out of the known set {2S, 2P, 2T} to yield negative effective added mass (CEA < 0), which is a condition for vibration of a freely rising body. In this paper, we deduce that there exists only one possible two degree-of-freedom elastically mounted cylinder system, which can be used to predict the dynamics of freely rising bodies. Because of the symmetry of the vortex wake, this system is one for which the natural frequencies are fNX = 2fNY. Although this seems clear in retrospect, previous attempts to predict critical mass did not take this into account. Implementing such an elastic system, we are able to predict vibration amplitudes and critical mass (m*crit = 0.57) for a freely rising cylinder in reasonable agreement with direct measurements for such a rising body, and even to predict the Lissajous figures representing the streamwise–transverse vibrations for a rising body with very small mass ratios (down to m* = 0.06), unobtainable from our direct measurements.

22 citations

Journal ArticleDOI
TL;DR: In this paper, a collision between a freshwater ice mass and a floating steel structure was simulated using the LS-DYNA software, where the behavior of the ice mass was modelled using an elliptic yield criterion and a strain-based pressure-dependent failure criterion.

22 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental vibration period of a dam-water system and corresponding added damping, force and mass, all key parameters to assess the seismic behavior of gravity dams are evaluated.

22 citations

Proceedings ArticleDOI
01 Jan 2009
TL;DR: In this article, a pump-turbine impeller with a diameter of 2.870m and a power of around 100MW was tested in air and in water and a numerical simulation using FEM (Finite Elements Model) was performed using the same boundary conditions as in the experiment.
Abstract: In this paper, the reduction in the natural frequencies of a pump-turbine impeller prototype when submerged in water has been investigated. The impeller, with a diameter of 2.870m belongs to a pump-turbine unit with a power of around 100MW. To analyze the influence of the added mass, both experimental tests and numerical simulations have been carried out. The experiment has been performed in air and in water. From the frequency response functions the modal characteristics such as natural frequencies and mode shapes have been obtained. A numerical simulation using FEM (Finite Elements Model) was done using the same boundary conditions as in the experiment (impeller in air and surrounded by a mass of water). The modal behaviour has also been calculated. The numerical results were compared with the available experimental results. The comparison shows a good agreement in the natural frequency values both in air and in water. The reduction in frequency due to the added mass effect of surrounding fluid has been calculated. The physics of this phenomenon due to the fluid structure interaction has been investigated from the analysis of the mode-shapes.Copyright © 2009 by ASME

22 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
81% related
Boundary layer
64.9K papers, 1.4M citations
79% related
Turbulence
112.1K papers, 2.7M citations
78% related
Finite element method
178.6K papers, 3M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
2022133
2021111
2020116
2019129
2018124