scispace - formally typeset
Search or ask a question
Topic

Added mass

About: Added mass is a research topic. Over the lifetime, 2849 publications have been published within this topic receiving 47899 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work addresses two difficult points in the simulation of blood flows in compliant vessels: the fluid and structure meshes generation and the solution of the fluid-structure problem with large displacements.

201 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a stabilized explicit coupling scheme for fluid-structure interaction problems involving a viscous incompressible fluid, which is based on Nitsche's method with a time penalty term giving L^2-control on the fluid pressure variations at the interface.

199 citations

Journal ArticleDOI
TL;DR: In this paper, an electromechanically coupled model for a cantilevered piezoelectric energy harvester with a tip proof mass is presented, based not only on a detailed modal analysis, but also on a thorough investigation of damping ratios that can significantly affect device performance.
Abstract: An electromechanically coupled model for a cantilevered piezoelectric energy harvester with a proof mass is presented. Proof masses are essential in microscale devices to move device resonances towards optimal frequency points for harvesting. Such devices with proof masses have not been rigorously modeled previously; instead, lumped mass or concentrated point masses at arbitrary points on the beam have been used. Thus, this work focuses on the exact vibration analysis of cantilevered energy harvester devices including a tip proof mass. The model is based not only on a detailed modal analysis, but also on a thorough investigation of damping ratios that can significantly affect device performance. A model with multiple degrees of freedom is developed and then reduced to a single-mode model, yielding convenient closed-form normalized predictions of device performance. In order to verify the analytical model, experimental tests are undertaken on a macroscale, symmetric, bimorph, piezoelectric energy harvester with proof masses of different geometries. The model accurately captures all aspects of the measured response, including the location of peak-power operating points at resonance and anti-resonance, and trends such as the dependence of the maximal power harvested on the frequency. It is observed that even a small change in proof mass geometry results in a substantial change of device performance due not only to the frequency shift, but also to the effect on the strain distribution along the device length. Future work will include the optimal design of devices for various applications, and quantification of the importance of nonlinearities (structural and piezoelectric coupling) for device performance.

196 citations

Journal ArticleDOI
TL;DR: In this article, the authors present closures for the drag and virtual mass force terms appearing in a two-fluid model for flow of a mixture consisting of uniformly sized gas bubbles dispersed in a liquid.
Abstract: We present closures for the drag and virtual mass force terms appearing in a two-fluid model for flow of a mixture consisting of uniformly sized gas bubbles dispersed in a liquid. These closures were deduced through computational experiments performed using an implicit formulation of the lattice Boltzmann method with a BGK collision model. Unlike the explicit schemes described in the literature, this implicit implementation requires iterative calculations, which, however, are local in nature. While the computational cost per time step is modestly increased, the implicit scheme dramatically expands the parameter space in multiphase flow calculations which can be simulated economically. The closure relations obtained in our study are limited to a regular array of uniformly sized bubbles and were obtained by simulating the rise behaviour of a single bubble in a periodic box. The effect of volume fraction on the rise characteristics was probed by changing the size of the box relative to that of the bubble. While spherical bubbles exhibited the expected hindered rise behaviour, highly distorted bubbles tended to rise cooperatively. The closure for the drag force, obtained in our study through computational experiments, captured both hindered and cooperative rise. A simple model for the virtual mass coefficient, applicable to both spherical and distorted bubbles, was also obtained by fitting simulation results. The virtual mass coefficient for isolated bubbles could be correlated with the aspect ratio of the bubbles.

184 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
81% related
Boundary layer
64.9K papers, 1.4M citations
79% related
Turbulence
112.1K papers, 2.7M citations
78% related
Finite element method
178.6K papers, 3M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
2022133
2021111
2020116
2019129
2018124