scispace - formally typeset
Search or ask a question
Topic

Added mass

About: Added mass is a research topic. Over the lifetime, 2849 publications have been published within this topic receiving 47899 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an accurate added mass model representation for a flexible elliptical cylinder vibrating in water is presented, where the analytical expressions for the hydrodynamic forces on elliptical cylinders are first derived in the elliptical coordinate system.

31 citations

Journal ArticleDOI
TL;DR: Sridhar et al. as discussed by the authors studied the effects of bubble entanglement in a traveling vortex ring and showed that the resulting volume displacement force is roughly at with the vortex travel direction, resulting in wakes directed towards the vortex centre.
Abstract: When a few bubbles are entrained in a travelling vortex ring, it has been shown that, even at extremely low volume loadings, their presence can significantly affect the structure of the vortex core (Sridhar & Katz, J. Fluid Mech., vol. 397, 1999, pp. 171–202). A typical Euler–Lagrange point-particle model with two-way coupling for this dilute system, wherein the bubbles are assumed subgrid and momentum point sources are used to model their effect on the flow, is shown to be unable to capture accurately the experimental trends of bubble settling location, bubble escape and vortex distortion for a range of bubble parameters and vortex strengths. The bubbles experience significant amounts of drag, lift, added mass, pressure and gravity forces. However, these forces are in balance with each other as the bubbles reach a mean settling location away from the vortex core. The reaction force on the fluid due to the net summation of these forces alone is thus very small and is unable to affect the vortex core. By accounting for fluid volume displacement due to bubble motion, experimental trends on vortex distortion and bubble settling location are captured accurately. The fluid displacement effects are studied by computing various contributions to an effective volume displacement force and are found to be important even at low volume loadings. As the bubble size and hence bubble Reynolds number increase, the bubbles settle further away from the vortex centre and have strong potential for vortex distortion. The net volume displacement force depends on the radial pressure force, the radial settling location of the bubble, as well as the vortex Reynolds number. The resultant of the volume displacement force is found to be roughly at with the vortex travel direction, resulting in wakes directed towards the vortex centre. Finally, a simple modification to the standard point-particle two-way coupling approach is developed wherein the interphase reaction source terms are consistently altered to account for the fluid displacement effects and reactions due to bubble accelerations.

31 citations

Journal ArticleDOI
TL;DR: In this paper, two-dimensional strip theory and three-dimensional computation methods are compared by a number of numerical simulations and extensive results are presented to validate the efficiency of the present methods.
Abstract: Large-amplitude, time-domain, wave-body interactions are studied in this paper for problems with forward speed. Both two-dimensional strip theory and three-dimensional computation methods are shown and compared by a number of numerical simulations. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact body surface, the boundary integral equations are solved numerically at each time step. The strip theory method implements Radial Basis Functions to approximate the longitudinal derivatives of the velocity potential on the body. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing wetted body geometry. Extensive results are presented to validate the efficiency of the present methods. These results include the added mass and damping computations for a Wigley III hull and an S-175 hull with forward speed using both two-dimensional and three-dimensional approaches. Exciting forces acting on a Wigley III hull due to regular head seas are obtained and compared using both the fully three-dimensional method and the two-dimensional strip theory. All the computational results are compared with experiments or other numerical solutions.

31 citations

Journal ArticleDOI
TL;DR: In this article, the authors provided an intuitive modeling and simulation approach to obtain the hydrodynamic damping and added mass coefficients of an open-frame ROV using computational fluid dynamic (CFD) approach in the preliminary design stage.
Abstract: The hydrodynamic damping and added mass of a remotely operated vehicle (ROV) are difficult to model. This paper provided an intuitive modeling and simulation approach to obtain the hydrodynamic damping and added mass coefficients of an open-frame ROV using computational fluid dynamic (CFD) approach in the preliminary design stage where extensive hydrodynamic test facilities are not available. The software MATLAB™, STAR CCM+™ and WAMIT™ are employed to compute the hydrodynamic damping coefficients and added mass coefficients of the ROV for control system design and virtual reality. Experimental validation for the heave and yaw responses in a water tank shows a close relation and insight to the simulation results for subsequent control system design.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the performances of two types of Luenberger observers, namely, the so-called Direct Velocity Feedback and Schur Displacement Feedback procedures, were analyzed to estimate the state of a fluid-structure interaction model for hemodynamics.

30 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
81% related
Boundary layer
64.9K papers, 1.4M citations
79% related
Turbulence
112.1K papers, 2.7M citations
78% related
Finite element method
178.6K papers, 3M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
2022133
2021111
2020116
2019129
2018124