scispace - formally typeset
Search or ask a question
Topic

Added mass

About: Added mass is a research topic. Over the lifetime, 2849 publications have been published within this topic receiving 47899 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the motion of a thin rigid lamina spanning large amplitudes in viscous fluids in a broad range of the oscillation frequencies is investigated. And the authors propose a novel formulation of hydrodynamic function that incorporates added mass and damping coefficients.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of the caisson on the cylinder's hydrodynamic coefficients and exciting forces are derived in the presence of an incident linear wave by use of an eigenfunction expansion approach.

30 citations

Journal ArticleDOI
TL;DR: In this article, an analysis for the motion of large free-floating bodies is presented for the response of a sphere and a short, vertical, circular cylinder floating in water of finite depth, and the results obtained by methods of Part I are utilized in conjunction with the equations of motion of the floating body to determine the response induced by wave excitation.
Abstract: A numerical scheme was developed in Part I utilizing digital computer calculations to determine wave excitation forces as well as added mass and damping coefficients for large objects in the sea. The analysis was carried out within the framework of linear theory for bodies of arbitrary shape, either submerged or semisubmerged, in water of finite depth. In this Part II, an analysis is presented for the motion of large free-floating bodies. The results obtained by methods of Part I are utilized in conjunction with the equations of motion of the floating body to determine the response induced by wave excitation. Numerical results are presented for the response of a sphere and a short, vertical, circular cylinder floating in water of finite depth.

30 citations

Journal ArticleDOI
TL;DR: In this article, the mechanism of modal coupling in cantilever plate flutter using the full Theodorsen airfoil theory within the linear framework was analyzed using an accurate, pseudo-spectral method.

30 citations

Book
31 Jul 1990
TL;DR: In this paper, Pierson-Moskkk et al. presented a simulation of a Tension Leg Platform response to Viscous and Potential Drift Forces on a Moored Vertical Cylinder.
Abstract: 1: Introduction.- 1.1 Introduction.- 1.2 Aim of Study.- 1.3 TLP Model.- 1.4 Environmental Loads.- 1.4.1 Methods to Compute Viscous Forces.- 1.4.2 Methods to Compute Potential Forces.- 1.5 Literature Review of TLP Analyses.- 1.6 Scope of Study.- 2: Equivalent Stochastic Quadratization for Single-Degree-of-Freedom Systems.- 2.1 Introduction.- 2.2 Analytical Method Formulation.- 2.3 Derivation of Linear and Quadratic Transfer Functions.- 2.4 Response Probability Distribution.- 2.5 Response Spectral Density.- 2.6 Solution Procedure.- 2.7 Example of Application.- 2.8 Summary and Conclusions.- 3: Equivalent Stochastic Quadratization for Multi-Degree-of-Freedom Systems.- 3.1 Introduction.- 3.2 Analytical Method Formulation.- 3.3 Derivation of Linear and Quadratic Transfer Functions.- 3.4 Response Probability Distribution.- 3.5 Response Spectral Density.- 3.6 Solution Procedure.- 3.7 Reduced Solution Analytical Method.- 3.8 Example of Application.- 3.9 Summary and Conclusions.- 4: Potential Wave Forces on a Moored Vertical Cylinder.- 4.1 Introduction.- 4.2 Volterra Series Force Description.- 4.3 Near-Field Approach for Deriving Potential Forces.- 4.3.1 Fluid Flow Boundary Value Problem.- 4.3.2 Perturbation Expansion.- 4.4 Linear Velocity Potential.- 4.5 Added Mass Force.- 4.6 Linear Force Transfer Functions.- 4.6.1 Wave Diffraction Force.- 4.6.2 Wave Diffraction Moment.- 4.6.3 Hydrodynamic Buoyancy Force.- 4.6.4 Comparison to Morison's Equation.- 4.7 Quadratic Force Transfer Functions.- 4.7.1 Wave Elevation Drift Force.- 4.7.2 Wave Elevation Drift Moment.- 4.7.3 Velocity Head Drift Force.- 4.7.4 Velocity Head Drift Moment.- 4.7.5 Body Motion Drift Forces and Moment.- 4.7.6 Numerical Examples for Fixed Vertical Cylinder.- 4.8 Transfer Functions for Tension Leg Platform.- 4.8.1 Modification of Cylinder Transfer Functions.- 4.8.2 Numerical Example for Tension Leg Platform.- 4.9 Summary and Conclusions.- 5: Equivalent Stochastic Quadratization for Tension Leg Platform Response to Viscous Drift Forces.- 5.1 Introduction.- 5.2 Formulation of TLP Model.- 5.3 Analytical Method Formulation.- 5.4 Derivation of Linear and Quadratic Transfer Functions.- 5.5 Response Probability Distribution.- 5.6 Response Spectral Density.- 5.7 Axial Tendon Force.- 5.8 Solution Procedure.- 5.9 Numerical Example.- 5.10 Summary and Conclusions.- 6: Stochastic Response of a Tension Leg Platform to Viscous and Potential Drift Forces.- 6.1 Introduction.- 6.2 Analytical Method Formulation.- 6.3 Numerical Results.- 6.3.1 Response to Quadratic Drag Force.- 6.3.2 Response to Quadratic Wave Elevation/Velocity Head Force.- 6.3.3 Response to Quadratic Body Motion Force.- 6.3.4 Response to Combined Viscous and Potential Quadratic Forces.- 6.3.5 Evaluation of Newman's Approximation.- 6.3.6 High Frequency Axial Tendon Force.- 6.4 Summary and Conclusions.- 7: Summary and Conclusions.- Appendix A: Gram-Charlier Coefficients.- A.1 Introduction.- A.2 Gram-Charlier Coefficients.- Appendix B: Evaluation of Expectations.- B.1 Introduction.- B.2 Expectations Involving Quadratic Nonlinearity.- B.3 High Order Central Moments.- Appendix C: Pierson-Moskowitz Wave Spectrum.- Appendix D: Simulation Methods.- D.1 Introduction.- D.2 Linear Wave Simulation.- D.3 Linear Wave Force Simulation.- D.4 Drag Force Simulation.- D.5 Quadratic Wave Force Simulation.- References:.

29 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
81% related
Boundary layer
64.9K papers, 1.4M citations
79% related
Turbulence
112.1K papers, 2.7M citations
78% related
Finite element method
178.6K papers, 3M citations
77% related
Numerical analysis
52.2K papers, 1.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
2022133
2021111
2020116
2019129
2018124