scispace - formally typeset
Search or ask a question
Topic

Adjacency list

About: Adjacency list is a research topic. Over the lifetime, 4419 publications have been published within this topic receiving 78449 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The study of eight representative physical properties of alkanes was used to compare the ability of both series of indices to produce significant quantitative structure−property relationship (QSPR) models.
Abstract: The concept of edge connectivity index is extended to a series of indices based on adjacency between edges in various fragments of the molecular graph. The analogous concept of vertex adjacency indices of the line graph of the molecular graph is also introduced. Some mathematical relations between both series of indices are found, showing that line-graph-based connectivity indices are linear combinations of edge-based descriptors. The study of eight representative physical properties of alkanes was used to compare the ability of both series of indices to produce significant quantitative structure−property relationship (QSPR) models.

56 citations

Book ChapterDOI
13 Oct 2019
TL;DR: An end-to-end deep learning segmentation method by combining a 3D UNet architecture with a graph neural network (GNN) model with two types of graph adjacency, which is applied to the task of segmenting the airway tree from chest CT scans.
Abstract: We present an end-to-end deep learning segmentation method by combining a 3D UNet architecture with a graph neural network (GNN) model. In this approach, the convolutional layers at the deepest level of the UNet are replaced by a GNN-based module with a series of graph convolutions. The dense feature maps at this level are transformed into a graph input to the GNN module. The incorporation of graph convolutions in the UNet provides nodes in the graph with information that is based on node connectivity, in addition to the local features learnt through the downsampled paths. This information can help improve segmentation decisions. By stacking several graph convolution layers, the nodes can access higher order neighbourhood information without substantial increase in computational expense. We propose two types of node connectivity in the graph adjacency: (i) one predefined and based on a regular node neighbourhood, and (ii) one dynamically computed during training and using the nearest neighbour nodes in the feature space. We have applied this method to the task of segmenting the airway tree from chest CT scans. Experiments have been performed on 32 CTs from the Danish Lung Cancer Screening Trial dataset. We evaluate the performance of the UNet-GNN models with two types of graph adjacency and compare it with the baseline UNet.

56 citations

Journal ArticleDOI
TL;DR: A novel approach for the decimation of triangle surface meshes that takes as input a triangle surface mesh and a set of planar proxies detected in a pre‐processing analysis step, and structured via an adjacency graph to approximate the local mesh geometry as well as the geometry and structure of proxies.
Abstract: We present a novel approach for the decimation of triangle surface meshes. Our algorithm takes as input a triangle surface mesh and a set of planar proxies detected in a pre-processing analysis step, and structured via an adjacency graph. It then performs greedy mesh decimation through a series of edge collapse, designed to approximate the local mesh geometry as well as the geometry and structure of proxies. Such structure-preserving approach is well suited to planar abstraction, i.e. extreme decimation approximating well the planar parts while filtering out the others. Our experiments on a variety of inputs illustrate the potential of our approach in terms of improved accuracy and preservation of structure.

55 citations

Journal ArticleDOI
TL;DR: A system for the automatic recognition of assembly features and the generation of disassembly sequences which can locate and partition spatially adjacent faces in a wide range of situations and at different resolutions is described.
Abstract: This paper describes a system for the automatic recognition of assembly features and the generation of disassembly sequences. The paper starts by reviewing the nature and use of assembly features. One of the conclusions drawn from this survey is that the majority of assembly features involve sets of spatially adjacent faces. Two principle types of adjacency relationships are identified and an algorithm is presented for identifying assembly features which arise from "spatial" and "contact" face adjacency relationships (known as s-adjacency and c-adjacency respectively). The algorithm uses an octree representation of a B-rep model to support the geometric reasoning required to locate assembly features on disjoint bodies. A pointerless octree representation is generated by recursively sub-dividing the assembly model's bounding box into octants which are used to locate: 1. Those portions of faces which are c-adjacent (i.e. they effectively touch within the tolerance of the octree). 2. Those portions of faces which are s-adjacent to a nominated face. The resulting system can locate and partition spatially adjacent faces in a wide range of situations and at different resolutions. The assembly features located are recorded as attributes in the B-rep model and are then used to generate a disassembly sequence plan for the assembly. This sequence plan is represented by a transition state tree which incorporates knowledge of the availability of feasible gripping features. By way of illustration, the algorithm is applied to several trial components.

55 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
82% related
Probabilistic logic
56K papers, 1.3M citations
82% related
Cluster analysis
146.5K papers, 2.9M citations
81% related
Matrix (mathematics)
105.5K papers, 1.9M citations
81% related
Robustness (computer science)
94.7K papers, 1.6M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023209
2022439
2021283
2020280
2019296
2018232