scispace - formally typeset
Search or ask a question
Topic

AdS/CFT correspondence

About: AdS/CFT correspondence is a research topic. Over the lifetime, 6660 publications have been published within this topic receiving 355520 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the Euclidean gravitational path integral computing the Renyi entropy was studied and analyzed under small variations, and the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion.
Abstract: We study the Euclidean gravitational path integral computing the Renyi entropy and analyze its behavior under small variations. We argue that, in Einstein gravity, the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion. This set-up is then generalized to arbitrary theories of gravity, where we show that the respective entanglement entropy functional needs to be extremized. We also extend this result to all orders in Newton’s constant G N , providing a derivation of quantum extremality. Understanding quantum extremality for mixtures of states provides a generalization of the dual of the boundary modular Hamiltonian which is given by the bulk modular Hamiltonian plus the area operator, evaluated on the so-called modular extremal surface. This gives a bulk prescription for computing the relative entropies to all orders in G N . We also comment on how these ideas can be used to derive an integrated version of the equations of motion, linearized around arbitrary states.

186 citations

Journal ArticleDOI
TL;DR: Loop quantum gravity as discussed by the authors predicts that black holes evolve into white holes, a theory that extends general relativity by quantizing spacetime and predicts that a black hole can evolve into a white hole.
Abstract: Loop quantum gravity---a theory that extends general relativity by quantizing spacetime---predicts that black holes evolve into white holes.

186 citations

Journal ArticleDOI
TL;DR: In this paper, a conjectured lower bound on the geometric entanglement entropy of an entangling cut passing through x is given by the second order shape deformation in the null direction.
Abstract: We prove a conjectured lower bound on 〈T__(x)〉ψ in any state ψ of a CFT on Minkowski space, dubbed the Quantum Null Energy Condition (QNEC). The bound is given by the second order shape deformation, in the null direction, of the geometric entanglement entropy of an entangling cut passing through x. Our proof involves a combination of the two independent methods that were used recently to prove the weaker Averaged Null Energy Condition (ANEC). In particular the properties of modular Hamiltonians under shape deformations for the state ψ play an important role, as do causality considerations. We study the two point function of a “probe” operator $$ \mathcal{O} $$ in the state ψ and use a lightcone limit to evaluate this correlator. Instead of causality in time we consider causality on modular time for the modular evolved probe operators, which we constrain using Tomita-Takesaki theory as well as certain generalizations pertaining to the theory of modular inclusions. The QNEC follows from very similar considerations to the derivation of the chaos bound and the causality sum rule. We use a kind of defect Operator Product Expansion to apply the replica trick to these modular flow computations, and the displacement operator plays an important role. We argue that the proof extends to more general relativistic QFT with an interacting UV fixed point and also prove a higher spin version of the QNEC. Our approach was inspired by the AdS/CFT proof of the QNEC which follows from properties of the Ryu-Takayanagi (RT) surface near the boundary of AdS, combined with the requirement of entanglement wedge nesting. Our methods were, as such, designed as a precise probe of the RT surface close to the boundary of a putative gravitational/stringy dual of any QFT with an interacting UV fixed point.

186 citations

Journal ArticleDOI
TL;DR: In this article, the authors conjecture a general formula for assigning R-charges and multiplicities for the chiral fields of all gauge theories living on branes at toric singularities.
Abstract: We conjecture a general formula for assigning R-charges and multiplicities for the chiral fields of all gauge theories living on branes at toric singularities. We check that the central charge and the dimensions of all the chiral fields agree with the information on volumes that can be extracted from toric geometry. We also analytically check the equivalence between the volume minimization procedure discovered in hep-th/0503183 and a-maximization, for the most general toric diagram. Our results can be considered as a very general check of the AdS/CFT correspondence, valid for all superconformal theories associated with toric singularities.

185 citations

Journal ArticleDOI
TL;DR: Three distinct regimes of behavior are found that are related to the spectrum of black hole quasinormal modes that correspond to damped oscillations of the order parameter and to overdamped approaches to the superfluid and normal states.
Abstract: We explore the far-from-equilibrium response of a holographic superfluid using the AdS/CFT correspondence. We establish the dynamical phase diagram corresponding to quantum quenches of the order parameter source field. We find three distinct regimes of behavior that are related to the spectrum of black hole quasinormal modes. These correspond to damped oscillations of the order parameter and to overdamped approaches to the superfluid and normal states. The presence of three regimes, which includes an emergent dynamical temperature scale, is argued to occur more generally in time-reversal-invariant systems that display continuous symmetry breaking.

185 citations


Network Information
Related Topics (5)
Supersymmetry
29.7K papers, 1.1M citations
97% related
Gauge theory
38.7K papers, 1.2M citations
95% related
Quantum chromodynamics
47.1K papers, 1.2M citations
93% related
Higgs boson
33.6K papers, 961.7K citations
92% related
Quark
43.3K papers, 951K citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2021234
2020348
2019387
2018368
2017393
2016413