scispace - formally typeset
Search or ask a question
Topic

Adult stem cell

About: Adult stem cell is a research topic. Over the lifetime, 19463 publications have been published within this topic receiving 1310397 citations. The topic is also known as: adult stem cell & Adult Stem Cells.


Papers
More filters
Journal ArticleDOI
TL;DR: Adult marrow stromal cells can be induced to overcome their mesenchymal commitment and may constitute an abundant and accessible cellular reservoir for the treatment of a variety of neurologic diseases.
Abstract: Bone marrow stromal cells exhibit multiple traits of a stem cell population. They can be greatly expanded in vitro and induced to differentiate into multiple mesenchymal cell types. However, differentiation to non-mesenchymal fates has not been demonstrated. Here, adult rat stromal cells were expanded as undifferentiated cells in culture for more than 20 passages, indicating their proliferative capacity. A simple treatment protocol induced the stromal cells to exhibit a neuronal phenotype, expressing neuron-specific enolase, NeuN, neurofilament-M, and tau. With an optimal differentiation protocol, almost 80% of the cells expressed NSE and NF-M. The refractile cell bodies extended long processes terminating in typical growth cones and filopodia. The differentiating cells expressed nestin, characteristic of neuronal precursor stem cells, at 5 hr, but the trait was undetectable at 6 days. In contrast, expression of trkA, the nerve growth factor receptor, persisted from 5 hr through 6 days. Clonal cell lines, established from single cells, proliferated, yielding both undifferentiated and neuronal cells. Human marrow stromal cells subjected to this protocol also differentiated into neurons. Consequently, adult marrow stromal cells can be induced to overcome their mesenchymal commitment and may constitute an abundant and accessible cellular reservoir for the treatment of a variety of neurologic diseases.

2,600 citations

Journal ArticleDOI
14 May 1999-Science
TL;DR: A stem cell associated with the bone marrow has epithelial cell lineage capability and a proportion of the regenerated hepatic cells were shown to be donor-derived.
Abstract: Bone marrow stem cells develop into hematopoietic and mesenchymal lineages but have not been known to participate in production of hepatocytes, biliary cells, or oval cells during liver regeneration. Cross-sex or cross-strain bone marrow and whole liver transplantation were used to trace the origin of the repopulating liver cells. Transplanted rats were treated with 2-acetylaminofluorene, to block hepatocyte proliferation, and then hepatic injury, to induce oval cell proliferation. Markers for Y chromosome, dipeptidyl peptidase IV enzyme, and L21-6 antigen were used to identify liver cells of bone marrow origin. From these cells, a proportion of the regenerated hepatic cells were shown to be donor-derived. Thus, a stem cell associated with the bone marrow has epithelial cell lineage capability.

2,477 citations

Journal ArticleDOI
TL;DR: It is reported that intravenous injection of adult bone marrow cells in the FAH−/− mouse, an animal model of tyrosinemia type I, rescued the mouse and restored the biochemical function of its liver.
Abstract: The characterization of hepatic progenitor cells is of great scientific and clinical interest. Here we report that intravenous injection of adult bone marrow cells in the FAH(-/-) mouse, an animal model of tyrosinemia type I, rescued the mouse and restored the biochemical function of its liver. Moreover, within bone marrow, only rigorously purified hematopoietic stem cells gave rise to donor-derived hematopoietic and hepatic regeneration. This result seems to contradict the conventional assumptions of the germ layer origins of tissues such as the liver, and raises the question of whether the cells of the hematopoietic stem cell phenotype are pluripotent hematopoietic cells that retain the ability to transdifferentiate, or whether they are more primitive multipotent cells.

2,417 citations

Journal ArticleDOI
TL;DR: It is demonstrated that nonadherent mammospheres are enriched in early progenitor/stem cells and able to differentiate along all three mammary epithelial lineages and to clonally generate complex functional structures in reconstituted 3D culture systems.
Abstract: Although the existence of mammary stem cells has been suggested by serial transplantation studies in mice, their identification has been hindered by the lack of specific surface markers, and by the absence of suitable in vitro assays for testing stem cell properties: self-renewal and ability to generate differentiated progeny. We have developed an in vitro cultivation system that allows for propagation of human mammary epithelial cells (HMECs) in an undifferentiated state, based on their ability to proliferate in suspension, as nonadherent mammospheres. We demonstrate that nonadherent mammospheres are enriched in early progenitor/stem cells and able to differentiate along all three mammary epithelial lineages and to clonally generate complex functional structures in reconstituted 3D culture systems. Gene expression analysis of cells isolated from nonadherent mammospheres revealed overlapping genetic programs with other stem and progenitor cells and identified new markers that may be useful in the identification of mammary stem cells. The isolation and characterization of these stem cells should help elucidate the molecular pathways that govern normal mammary development and carcinogenesis.

2,397 citations

Journal ArticleDOI
TL;DR: Results show that expression of the Bcrp1/ABCG2 gene is an important determinant of the SP phenotype, and that it might serve as a marker for stem cells from various sources.
Abstract: Stem cells from bone marrow, skeletal muscle and possibly other tissues can be identified by the 'side-population' (SP) phenotype. Although it has been assumed that expression of ABC transporters is responsible for this phenotype, the specific molecules involved have not been defined. Here we show that expression of the Bcrp1 (also known as Abcg2 murine/ABCG2 human) gene is a conserved feature of stem cells from a wide variety of sources. Bcrp1 mRNA was expressed at high levels in primitive murine hematopoietic stem cells, and was sharply downregulated with differentiation. Enforced expression of the ABCG2 cDNA directly conferred the SP phenotype to bone-marrow cells and caused a reduction in maturing progeny both in vitro and in transplantation-based assays. These results show that expression of the Bcrp1/ABCG2 gene is an important determinant of the SP phenotype, and that it might serve as a marker for stem cells from various sources.

2,309 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
94% related
Stem cell
129.1K papers, 5.9M citations
94% related
Signal transduction
122.6K papers, 8.2M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
86% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202328
202278
2021324
2020322
2019365