scispace - formally typeset
Search or ask a question
Topic

Advanced Spaceborne Thermal Emission and Reflection Radiometer

About: Advanced Spaceborne Thermal Emission and Reflection Radiometer is a research topic. Over the lifetime, 1317 publications have been published within this topic receiving 37425 citations. The topic is also known as: Advanced spaceborne thermal emission and reflection radiometer & ASTER GDEM.


Papers
More filters
Journal ArticleDOI
TL;DR: Validation using airborne simulator images taken over playas and ponds in central Nevada demonstrates that, with proper atmospheric compensation, it is possible to meet the theoretical expectations of temperature/emissivity separation (TES), and ASTER's TES algorithm hybridizes three established algorithms.
Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scanner on NASA's Earth Observing System (EOS)-AM1 satellite (launch scheduled for 1998) will collect five bands of thermal infrared (TIR) data with a noise equivalent temperature difference (NE/spl Delta/T) of /spl les/0.3 K to estimate surface temperatures and emissivity spectra, especially over land, where emissivities are not known in advance. Temperature/emissivity separation (TES) is difficult because there are five measurements but six unknowns. Various approaches have been used to constrain the extra degree of freedom. ASTER's TES algorithm hybridizes three established algorithms, first estimating the normalized emissivities and then calculating emissivity band ratios. An empirical relationship predicts the minimum emissivity from the spectral contrast of the ratioed values, permitting recovery of the emissivity spectrum. TES uses an iterative approach to remove reflected sky irradiance. Based on numerical simulation, TES should be able to recover temperatures within about /spl plusmn/1.5 K and emissivities within about /spl plusmn/0.015. Validation using airborne simulator images taken over playas and ponds in central Nevada demonstrates that, with proper atmospheric compensation, it is possible to meet the theoretical expectations. The main sources of uncertainty in the output temperature and emissivity images are the empirical relationship between emissivity values and spectral contrast, compensation for reflected sky irradiance, and ASTER's precision, calibration, and atmospheric compensation.

1,268 citations

Journal ArticleDOI
TL;DR: ASTER will, for the first time, provide high-spatial resolution multispectral thermal infrared data from orbit and the highest spatial resolution surface spectral reflectance temperature and emissivity data of all of the EOS-AM1 instruments.
Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a research facility instrument provided by the Ministry of International Trade and Industry (MITI), Tokyo, Japan to be launched on NASA's Earth Observing System morning (EOS-AM1) platform in 1998. ASTER has three spectral hands in the visible near-infrared (VNIR), six bands in the shortwave infrared (SWIR), and five bands in the thermal infrared (TIR) regions, with 15-, 30-, and 90-m ground resolution, respectively. The VNIR subsystem has one backward-viewing band for stereoscopic observation in the along-track direction. Because the data will have wide spectral coverage and relatively high spatial resolution, it will be possible to discriminate a variety of surface materials and reduce problems in some lower resolution data resulting from mixed pixels. ASTER will, for the first time, provide high-spatial resolution multispectral thermal infrared data from orbit and the highest spatial resolution surface spectral reflectance temperature and emissivity data of all of the EOS-AM1 instruments. The primary science objective of the ASTER mission is to improve understanding of the local- and regional-scale processes occurring on or near the Earth's surface and lower atmosphere, including surface-atmosphere interactions. Specific areas of the science investigation include the following: (1) land surface climatology; (2) vegetation and ecosystem dynamics; (3) volcano monitoring; (4) hazard monitoring; (5) aerosols and clouds; (6) carbon cycling in the marine ecosystem; (7) hydrology; (8) geology and soil; and (9) land surface and land cover change. There are three categories of ASTER data: a global map, regional monitoring data sets, and local data sets to be obtained for requests from individual investigators.

885 citations

Journal ArticleDOI
TL;DR: A review of multispectral and hyperspectral remote sensing data, products and applications in geology shows a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community.

759 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a three-step methodological framework for assessing and correcting digital elevation models (DEMs) to quantify glacier elevation changes: (i) remove DEM shifts, (ii) check for elevation-dependent biases, and (iii) checking for higher-order, sensor-specific biases.
Abstract: . There are an increasing number of digital elevation models (DEMs) available worldwide for deriving elevation differences over time, including vertical changes on glaciers. Most of these DEMs are heavily post-processed or merged, so that physical error modelling becomes difficult and statistical error modelling is required instead. We propose a three-step methodological framework for assessing and correcting DEMs to quantify glacier elevation changes: (i) remove DEM shifts, (ii) check for elevation-dependent biases, and (iii) check for higher-order, sensor-specific biases. A simple, analytic and robust method to co-register elevation data is presented in regions where stable terrain is either plentiful (case study New Zealand) or limited (case study Svalbard). The method is demonstrated using the three global elevation data sets available to date, SRTM, ICESat and the ASTER GDEM, and with automatically generated DEMs from satellite stereo instruments of ASTER and SPOT5-HRS. After 3-D co-registration, significant biases related to elevation were found in some of the stereoscopic DEMs. Biases related to the satellite acquisition geometry (along/cross track) were detected at two frequencies in the automatically generated ASTER DEMs. The higher frequency bias seems to be related to satellite jitter, most apparent in the back-looking pass of the satellite. The origins of the more significant lower frequency bias is uncertain. ICESat-derived elevations are found to be the most consistent globally available elevation data set available so far. Before performing regional-scale glacier elevation change studies or mosaicking DEMs from multiple individual tiles (e.g. ASTER GDEM), we recommend to co-register all elevation data to ICESat as a global vertical reference system.

697 citations

Journal ArticleDOI
TL;DR: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high spatial resolution, multispectral imager with along-track stereo capabilities scheduled for launch on the first NASA spacecraft of the Earth Observing System (Terra) in 1999 as discussed by the authors.
Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high spatial resolution, multispectral imager with along-track stereo capabilities scheduled for launch on the first NASA spacecraft of the Earth Observing System (Terra) in 1999. Data will be obtained in 14 spectral bands covering the visible through the thermal infrared wavelength region. A number of standard data products will be available to requesters through an on-line archival and processing system. Particular, user-specified data acquisitions will be possible through a Data Acquisition Request system.

568 citations


Network Information
Related Topics (5)
Vegetation
49.2K papers, 1.4M citations
79% related
Sea surface temperature
21.2K papers, 874.7K citations
78% related
Sea ice
24.3K papers, 876.6K citations
77% related
Radar
91.6K papers, 1M citations
77% related
Precipitation
32.8K papers, 990.4K citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023121
2022275
202155
202047
201976
201859