scispace - formally typeset
Search or ask a question
Topic

Aerial image

About: Aerial image is a research topic. Over the lifetime, 3326 publications have been published within this topic receiving 42035 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An integrated system for navigation parameter estimation using sequential aerial images, where the navigation parameters represent the positional and velocity information of an aircraft for autonomous navigation is presented.
Abstract: Presents an integrated system for navigation parameter estimation using sequential aerial images, where the navigation parameters represent the positional and velocity information of an aircraft for autonomous navigation. The proposed integrated system is composed of two parts: relative position estimation and absolute position estimation. Relative position estimation recursively computes the current position of an aircraft by accumulating relative displacement estimates extracted from two successive aerial images. Simple accumulation of parameter values reduces the reliability of the extracted parameter estimates as an aircraft goes on navigating, resulting in a large positional error. Therefore, absolute position estimation is required to compensate for the positional error generated by the relative position estimation. Absolute position estimation algorithms using image matching and digital elevation model (DEM) matching are presented. In the image matching, a robust-oriented Hausdorff measure (ROHM) is employed, whereas in the DEM matching, an algorithm using multiple image pairs is used. Experiments with four real aerial image sequences show the effectiveness of the proposed integrated position estimation algorithm.

207 citations

Journal ArticleDOI
TL;DR: A deeply supervised (DS) attention metric-based network (DSAMNet) is proposed in this article to learn change maps by means of deep metric learning, in which convolutional block attention modules (CBAM) are integrated to provide more discriminative features.
Abstract: Change detection (CD) aims to identify surface changes from bitemporal images. In recent years, deep learning (DL)-based methods have made substantial breakthroughs in the field of CD. However, CD results can be easily affected by external factors, including illumination, noise, and scale, which leads to pseudo-changes and noise in the detection map. To deal with these problems and achieve more accurate results, a deeply supervised (DS) attention metric-based network (DSAMNet) is proposed in this article. A metric module is employed in DSAMNet to learn change maps by means of deep metric learning, in which convolutional block attention modules (CBAM) are integrated to provide more discriminative features. As an auxiliary, a DS module is introduced to enhance the feature extractor's learning ability and generate more useful features. Moreover, another challenge encountered by data-driven DL algorithms is posed by the limitations in change detection datasets (CDDs). Therefore, we create a CD dataset, Sun Yat-Sen University (SYSU)-CD, for bitemporal image CD, which contains a total of 20,000 aerial image pairs of size 256 x 256. Experiments are conducted on both the CDD and the SYSU-CD dataset. Compared to other state-of-the-art methods, our network achieves the highest accuracy on both datasets, with an F1 of 93.69% on the CDD dataset and 78.18% on the SYSU-CD dataset.

206 citations

Journal Article
TL;DR: In this paper, an approach for the automatic extraction of roads from digital aerial imagery is proposed, where roads are modeled as a network of intersections and links between these intersections, and are found by a grouping process.
Abstract: An approach for the automatic extraction of roads from digital aerial imagery is proposed. It makes use of several versions of the same aerial image with different resolutions. Roads are modeled as a network of intersections and links between these intersections, and are found by a grouping process. The context of roads is hierarchically structured into a global and a local level. The automatic segmentation of the aerial image into different global contexts, i.e., rural, forest, and urban area, is used to focus the extraction to the most promising regions. For the actual extraction of the roads, edges are extracted in the original high resolution image (0.2 to 0.5 m) and lines are extracted in an image of reduced resolution. Using both resolution levels and explicit knowledge about roads, hypotheses for road segments are generated. They are grouped iteratively into larger segments. In addition to the grouping algorithms, knowledge about the local context, e.g., shadows cast by a tree onto a road segment, is used to bridge gaps. To construct the road network, finally intersections are extracted. Examples and results of an evaluation based on manually plotted reference data are given, indicating the potential of the approach.

203 citations

Journal ArticleDOI
TL;DR: Can training with large-scale publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance and can satisfying performance can be obtained with significantly less manual annotation effort?
Abstract: This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.

202 citations

Journal ArticleDOI
TL;DR: In this article, a large-scale aerial image data set is constructed for remote sensing image captioning and a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing captioning.
Abstract: Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at this https URL

196 citations


Network Information
Related Topics (5)
Pixel
136.5K papers, 1.5M citations
86% related
Image processing
229.9K papers, 3.5M citations
82% related
Image segmentation
79.6K papers, 1.8M citations
80% related
Convolutional neural network
74.7K papers, 2M citations
79% related
Object detection
46.1K papers, 1.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023116
2022276
2021160
2020253
2019268
2018208