scispace - formally typeset
Search or ask a question
Topic

Afferent arterioles

About: Afferent arterioles is a research topic. Over the lifetime, 1097 publications have been published within this topic receiving 38933 citations. The topic is also known as: renal afferent arteriole & kidney afferent arteriole.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that nitric oxide synthase in macula densa cells is activated by tubular-fluid reabsorption and mediates a vasodilating component to the tubuloglomerular feedback response.
Abstract: Tubular-fluid reabsorption by specialized cells of the nephron at the junction of the ascending limb of the loop of Henle and the distal convoluted tubule, termed the macula densa, releases compounds causing vasoconstriction of the adjacent afferent arteriole. Activation of this tubuloglomerular feedback response reduces glomerular capillary pressure of the nephron and, hence, the glomerular filtration rate. The tubuloglomerular feedback response functions in a negative-feedback mode to relate glomerular capillary pressure to tubular-fluid delivery and reabsorption. This system has been implicated in renal autoregulation, renin release, and longterm body fluid and blood-pressure homeostasis. Here we report that arginine-derived nitric oxide, generated in the macula densa, is an additional intercellular signaling molecule that is released during tubular-fluid reabsorption and counters the vasoconstriction of the afferent arteriole. Antibody to rat cerebellar constitutive nitric oxide synthase stained rat macula densa cells specifically. Microperfusion of the macula densa segment of single nephrons with N omega-methyl-L-arginine (an inhibitor of nitric oxide synthase) or with pyocyanin (a lipid-soluble inhibitor of endothelium-derived relaxation factor) showed that generation of nitric oxide can vasodilate the afferent arteriole and increase glomerular capillary pressure; this effect was blocked by drugs that prevent tubular-fluid reabsorption. We conclude that nitric oxide synthase in macula densa cells is activated by tubular-fluid reabsorption and mediates a vasodilating component to the tubuloglomerular feedback response. These findings imply a role for arginine-derived nitric oxide in body fluid-volume and blood-pressure homeostasis, in addition to its established roles in modulation of vascular tone by the endothelium and in neurotransmission.

527 citations

Journal ArticleDOI
01 Oct 1982-Diabetes
TL;DR: The vasculature of the islets of Langerhans was studied in rats using methacrylate corrosion casts and islet reconstructions from stained serial paraffin sections as discussed by the authors.
Abstract: The vasculature of the islets of Langerhans was studied in rats using methacrylate corrosion casts and islet reconstructions from stained serial paraffin sections. In corrosion casts, which allowed a three-dimensional view of the pancreatic vasculature, all islets had one or two afferent arterioles, which gave off numerous capillaries to form a glomerular-like network. Islets could be grouped in three classes on the basis of size. Moreover, these classes had preferential locations within the vascular tree: the smaller the islet, the more peripheral. In small islets (those less than 160 micrometers in diameter) efferent capillaries arose from this network and either coalesced at the periphery of the islet or passed through perinsular exocrine tissue before coalescing into venules. However, in intermediate islets (those 160--260 micrometers in diameter) and large islets (those greater than 260 micrometers in diameter) efferent capillaries usually coalesced at the edge of the islet forming an extensive fingerlike network of collecting venules over the islet. This suggested that at least in the rat a large amount of the islet tissue is directly drained by venules. In serial paraffin sections of islets perfused with India ink and stained alternately for B-cells or for non-B-cells, the relation of the blood vessels and the organized array of different cell types making up the islet was discernible. In islets of all sizes, the afferent arterioles entered the islet of all sizes, the afferent arterioles entered the islet at discontinuities of the mantle of non-B-(glucagon, somatostatin, and pancreatic polypeptide) cells. Entering at the B-cell mass, the arterioles broke into capillaries that traversed the B-cell core before passing through the opposite non-B-cell mantle. The afferent capillaries coalesced into collecting venules outside the islet. In intermediate and large islets, the overlying collecting venule network was closely apposed to the mantle. These anatomic findings indicate that in the rat islet only some of the efferent vessels are part of a insuloacinar portal system and that the afferent vessels reach the B-cell core without passing through the non-B-cell islet tissue.

510 citations

Journal ArticleDOI
TL;DR: Age-associated loss of kidney function has been recognized for decades, and changes in the activity of the renin-angiotensin and nitric oxide systems appear to be particularly important, as is the modulating effect of gender.

459 citations

Journal ArticleDOI
TL;DR: Differential effects of adenosine tonically inhibits the renal release of renin and stimulates NaCl transport in the cortical proximal tubule but inhibits it in medullary segments including theMedullary thick ascending limb.
Abstract: In this review we outline the unique effects of the autacoid adenosine in the kidney. Adenosine is present in the cytosol of renal cells and in the extracellular space of normoxic kidneys. Extracellular adenosine can derive from cellular adenosine release or extracellular breakdown of ATP, AMP, or cAMP. It is generated at enhanced rates when tubular NaCl reabsorption and thus transport work increase or when hypoxia is induced. Extracellular adenosine acts on adenosine receptor subtypes in the cell membranes to affect vascular and tubular functions. Adenosine lowers glomerular filtration rate (GFR) by constricting afferent arterioles, especially in superficial nephrons, and acts as a mediator of the tubuloglomerular feedback, i.e., a mechanism that coordinates GFR and tubular transport. In contrast, it leads to vasodilation in deep cortex and medulla. Moreover, adenosine tonically inhibits the renal release of renin and stimulates NaCl transport in the cortical proximal tubule but inhibits it in medullary segments including the medullary thick ascending limb. These differential effects of adenosine are subsequently analyzed in a more integrative way in the context of intrarenal metabolic regulation of kidney function, and potential pathophysiological consequences are outlined.

396 citations

Journal ArticleDOI
TL;DR: The distinct location of both NOS isoforms in the cortex confirms that NO plays a crucial role in local glomerular signaling events in various animal species including humans.
Abstract: Nitric oxide (NO) is generated from L-arginine by NO synthase (NOS). We have investigated the localization of constitutive NOS isoforms in rat, mouse, guinea pig, rabbit, pig, and human kidney. NADPH diaphorase (NADPH-d) reaction was used for histochemical detection of NOS enzyme activity, neuronal NOS (NOS I) and endothelial NOS (NOS III) were identified by specific antibody, and in situ hybridization was applied for NOS I mRNA detection. Strong presence of NOS I in macula densa (MD), previously detected in rat, was found in all species including humans. Additional NOS I-positive cells of the thick ascending limb (TALH) were defined. A clear-cut distinction between Tamm-Horsfall-protein-positive cells of the TALH and NOS I-positive cells of the TALH was shown. Ultrastructurally, NOS I was located in the cytosol. Intimate spatial relation between NOS I-positive cells and renin-containing preglomerular afferent arteriole suggests an effect of MD-derived NO on the juxtaglomerular granular cells. In the renal vasculature, both NADPH-d and NOS III were located in the endothelium of cortical and medullary vessels, whereas the muscle layer was unreactive. The glomerular arterioles showed stronger labeling in the efferent than in the afferent endothelium, and efferent endothelium selectively contained both NOS I and NOS III. The unique morphology of efferent endothelial cells indicates a particular role for NO in this vessel segment. At the capillary level, only the glomerular tuft showed NOS-positive endothelia. A subpopulation of renal nerves containing NADPH-d and NOS I was found in perivascular connective tissue and near pelvic epithelium. These results demonstrate a wide distribution of two constitutive NOS isoforms in the kidney of various animal species including humans. The distinct location of both isoforms in the cortex confirms that NO plays a crucial role in local glomerular signaling events.

374 citations


Network Information
Related Topics (5)
Angiotensin II
51.3K papers, 1.9M citations
86% related
Renal function
59.2K papers, 1.8M citations
83% related
Kidney disease
71.7K papers, 2.2M citations
82% related
Kidney
73K papers, 2.1M citations
81% related
Blood pressure
139.2K papers, 4.2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202212
20216
202018
20197
201815