scispace - formally typeset
Search or ask a question

Showing papers on "Aging brain published in 2021"


Journal ArticleDOI
TL;DR: The role of senescent cells in brain plasticity and cognitive function impairments and how senolytics can improve them is explored in this article, where the role of cell senescence may play a role in the aging of the brain, as it has been documented in other organs.
Abstract: Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.

91 citations


Journal ArticleDOI
TL;DR: It is demonstrated that NK cell accumulation in the aging brain impairs neurogenesis, which may serve as a therapeutic target to improve cognition in the aged population.
Abstract: Normal aging is accompanied by escalating systemic inflammation. Yet the potential impact of immune homeostasis on neurogenesis and cognitive decline during brain aging have not been previously addressed. Here we report that natural killer (NK) cells of the innate immune system reside in the dentate gyrus neurogenic niche of aged brains in humans and mice. In situ expansion of these cells contributes to their abundance, which dramatically exceeds that of other immune subsets. Neuroblasts within the aged dentate gyrus display a senescence-associated secretory phenotype and reinforce NK cell activities and surveillance functions, which result in NK cell elimination of aged neuroblasts. Genetic or antibody-mediated depletion of NK cells leads to sustained improvements in neurogenesis and cognitive function during normal aging. These results demonstrate that NK cell accumulation in the aging brain impairs neurogenesis, which may serve as a therapeutic target to improve cognition in the aged population.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported robust age-dependent increases in vascular inflammation, peripheral lymphocyte infiltration, and blood-brain barrier (BBB) permeability, which was subdued by global inactivation and by endothelial cell-specific ablation of C3ar1.
Abstract: Dysfunction of immune and vascular systems has been implicated in aging and Alzheimer disease; however, their interrelatedness remains poorly understood. The complement pathway is a well-established regulator of innate immunity in the brain. Here, we report robust age-dependent increases in vascular inflammation, peripheral lymphocyte infiltration, and blood-brain barrier (BBB) permeability. These phenotypes were subdued by global inactivation and by endothelial cell-specific ablation of C3ar1. Using an in vitro model of the BBB, we identified intracellular Ca2+ as a downstream effector of C3a/C3aR signaling and a functional mediator of vascular endothelial cadherin junction and barrier integrity. Endothelial C3ar1 inactivation also dampened microglia reactivity and improved hippocampal and cortical volumes in the aging brain, demonstrating a crosstalk between brain vasculature dysfunction and immune cell activation and neurodegeneration. Further, prominent C3aR-dependent vascular inflammation was also observed in a tau-transgenic mouse model. Our studies suggest that heightened C3a/C3aR signaling through endothelial cells promotes vascular inflammation and BBB dysfunction and contributes to overall neuroinflammation in aging and neurodegenerative disease.

79 citations


Posted ContentDOI
10 Nov 2021-eLife
TL;DR: In this article, brain age in adulthood was associated with the congenital factors of birth weight and polygenic scores of brain age, assumed to reflect a constant, lifelong influence on brain structure from early life.
Abstract: Brain age is a widely used index for quantifying individuals' brain health as deviation from a normative brain aging trajectory. Higher-than-expected brain age is thought partially to reflect above-average rate of brain aging. Here, we explicitly tested this assumption in two independent large test datasets (UK Biobank [main] and Lifebrain [replication]; longitudinal observations ≈ 2750 and 4200) by assessing the relationship between cross-sectional and longitudinal estimates of brain age. Brain age models were estimated in two different training datasets (n ≈ 38,000 [main] and 1800 individuals [replication]) based on brain structural features. The results showed no association between cross-sectional brain age and the rate of brain change measured longitudinally. Rather, brain age in adulthood was associated with the congenital factors of birth weight and polygenic scores of brain age, assumed to reflect a constant, lifelong influence on brain structure from early life. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.

47 citations


Journal ArticleDOI
TL;DR: In this article, a mouse model of long-term (15 weeks) dietary fiber deficiency was used to mimic a sustained low fiber intake in humans, and it was found that FD mice showed impaired cognition, including deficits in object location memory, temporal order memory, and the ability to perform daily living activities.
Abstract: Background Cognitive impairment, an increasing mental health issue, is a core feature of the aging brain and neurodegenerative diseases. Industrialized nations especially, have experienced a marked decrease in dietary fiber intake, but the potential mechanism linking low fiber intake and cognitive impairment is poorly understood. Emerging research reported that the diversity of gut microbiota in Western populations is significantly reduced. However, it is unknown whether a fiber-deficient diet (which alters gut microbiota) could impair cognition and brain functional elements through the gut-brain axis. Results In this study, a mouse model of long-term (15 weeks) dietary fiber deficiency (FD) was used to mimic a sustained low fiber intake in humans. We found that FD mice showed impaired cognition, including deficits in object location memory, temporal order memory, and the ability to perform daily living activities. The hippocampal synaptic ultrastructure was damaged in FD mice, characterized by widened synaptic clefts and thinned postsynaptic densities. A hippocampal proteomic analysis further identified a deficit of CaMKIId and its associated synaptic proteins (including GAP43 and SV2C) in the FD mice, along with neuroinflammation and microglial engulfment of synapses. The FD mice also exhibited gut microbiota dysbiosis (decreased Bacteroidetes and increased Proteobacteria), which was significantly associated with the cognitive deficits. Of note, a rapid differentiating microbiota change was observed in the mice with a short-term FD diet (7 days) before cognitive impairment, highlighting a possible causal impact of the gut microbiota profile on cognitive outcomes. Moreover, the FD diet compromised the intestinal barrier and reduced short-chain fatty acid (SCFA) production. We exploit these findings for SCFA receptor knockout mice and oral SCFA supplementation that verified SCFA playing a critical role linking the altered gut microbiota and cognitive impairment. Conclusions This study, for the first time, reports that a fiber-deprived diet leads to cognitive impairment through altering the gut microbiota-hippocampal axis, which is pathologically distinct from normal brain aging. These findings alert the adverse impact of dietary fiber deficiency on brain function, and highlight an increase in fiber intake as a nutritional strategy to reduce the risk of developing diet-associated cognitive decline and neurodegenerative diseases. Video Abstract.

46 citations


Posted ContentDOI
08 Feb 2021-bioRxiv
TL;DR: This work found no association between cross-sectional brain age and steeper brain decline in adulthood, and brain age in adulthood was associated with early-life influences indexed by birth weight and polygenic scores.
Abstract: Brain age is an influential index for quantifying brain health, assumed partially to reflect the rate of brain aging. We explicitly tested this assumption in two large datasets and found no association between cross-sectional brain age and steeper brain decline. Rather, brain age in adulthood was associated with early-life influences indexed by birth weight and polygenic scores. The results call for nuanced interpretations of cross-sectional indices of the aging brain.

38 citations


Posted ContentDOI
12 Apr 2021-bioRxiv
TL;DR: The authors found no association between cross-sectional brain age and steeper brain decline measured longitudinally, rather, brain age in adulthood was associated with early-life influences indexed by birth weight and polygenic scores.
Abstract: Brain age is a widely used index for quantifying individuals’ brain health as deviation from a normative brain aging trajectory. Higher than expected brain age is thought partially to reflect above-average rate of brain aging. We explicitly tested this assumption in two large datasets and found no association between cross-sectional brain age and steeper brain decline measured longitudinally. Rather, brain age in adulthood was associated with early-life influences indexed by birth weight and polygenic scores. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.

38 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic).
Abstract: The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.

35 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the relationship between distinct longitudinal alterations in white matter integrity and cognition, and found that age-related cognitive decline is related to white matter alterations, and thus give support to the "disconnected hypothesis" of the aging brain.
Abstract: Previous studies have shown an association between cognitive decline and white matter integrity in aging. This led to the formulation of a "disconnection hypothesis" in the aging-brain, which states that the disruption in cortical network communication may explain the cognitive decline during aging. Although some longitudinal studies have already investigated the changes occurring in white matter microstructure, most focused on specific white matter tracts. Our study aims to characterize the longitudinal whole-brain signatures of white matter microstructural change during aging. Furthermore, we assessed the relationship between distinct longitudinal alterations in white matter integrity and cognition. White matter microstructural properties were estimated from diffusion magnetic resonance imaging, and cognitive status characterized from extensive neurocognitive testing. The same individuals were evaluated at two timepoints, with a mean interval time of 52.8 months (SD = 7.24) between first and last assessment. Our results show that age is associated with a decline in cognitive performance and a degradation in white matter integrity. Additionally, significant associations were found between diffusion measures and different cognitive dimensions (memory, executive function and general cognition). Overall, these results suggest that age-related cognitive decline is related to white matter alterations, and thus give support to the "disconnected hypothesis" of the aging brain.

31 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared pH in the human brain and the cerebrospinal fluid (CSF) of postmortem control and Alzheimer's disease cases, and found that low pH exposure could modulate the release of proinflammatory cytokines and the uptake of amyloid beta by microglia.

29 citations


Journal ArticleDOI
06 Jul 2021
TL;DR: In this article, the authors discuss white matter changes, with focus on oligodendrocyte lineage cells and their ability to produce and maintain myelin to support normal brain homoeostasis.
Abstract: More than half of the human brain volume is made up of white matter: regions where axons are coated in myelin, which primarily functions to increase the conduction speed of axon potentials. White matter volume significantly decreases with age, correlating with cognitive decline. Much research in the field of non-pathological brain aging mechanisms has taken a neuron-centric approach, with relatively little attention paid to other neural cells. This review discusses white matter changes, with focus on oligodendrocyte lineage cells and their ability to produce and maintain myelin to support normal brain homoeostasis. Improved understanding of intrinsic cellular changes, general senescence mechanisms, intercellular interactions and alterations in extracellular environment which occur with aging and impact oligodendrocyte cells is paramount. This may lead to strategies to support oligodendrocytes in aging, for example by supporting myelin synthesis, protecting against oxidative stress and promoting the rejuvenation of the intrinsic regenerative potential of progenitor cells. Ultimately, this will enable the protection of white matter integrity thus protecting cognitive function into the later years of life.

Journal ArticleDOI
TL;DR: In this article, the authors apply quantitative three-dimensional electron microscopy to map mitochondrial network morphology and complexity in the mouse brain, and examine somatic, dendritic and axonal mitochondria in the dentate gyrus and cornu ammonis 1 (CA1) of the mouse hippocampus.

Journal ArticleDOI
TL;DR: First line of evidence is provided that SPD provides neuroprotection against aging-induced oxidative stress by regulating autophagy, antioxidants level and also reduces neuroinflammation.
Abstract: Spermidine (SPD) is a natural polyamine present in all living organisms and is involved in the maintenance of cellular homeostasis by inducing autophagy in different model organisms. Its role as a caloric restriction mimetic (CRM) is still being investigated. We have undertaken this study to investigate whether SPD, acting as a CRM, can confer neuroprotection in d-galactose induced accelerated senescence model rat and naturally aged rats through modulation of autophagy and inflammation. Young male rats (4 months), d-gal induced (500 mg/kg b.w., subcutaneously) aging and naturally aged (22 months) male rats were supplemented with SPD (10 mg/kg b.w., orally) for 6 weeks. Standard protocols were employed to measure prooxidants, antioxidants, apoptotic cell death and electron transport chain complexes in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy and inflammatory marker genes. Our data demonstrate that SPD significantly (p ≤ 0.05) decreased the level of pro-oxidants and increased the level of antioxidants. SPD supplementation also augmented the activities of electron transport chain complexes in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. RT-PCR data revealed that SPD up-regulated the expression of autophagy genes (ATG-3, Beclin-1, ULK-1 and LC3B) and down-regulated the expression of the inflammatory gene (IL-6) in aging brain. Our results provide first line of evidence that SPD provides neuroprotection against aging-induced oxidative stress by regulating autophagy, antioxidants level and also reduces neuroinflammation. These results suggest that SPD may be beneficial for neuroprotection during aging and age-related disorders.

Journal ArticleDOI
TL;DR: The physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles as well as novel in vitro BBB models.
Abstract: The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood–brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.

Journal ArticleDOI
TL;DR: Amin et al. as discussed by the authors found that AMPK deletion in neurons increased basal neuronal excitability and reduced latency to seizure upon stimulation, while AMPK activation appears to be both neuroprotective and pro-apoptotic, possibly dependent upon neural cell types, the nature of insults, and the intensity and duration of activation.
Abstract: The adenosine monophosphate-activated protein kinase (AMPK) is an integrative metabolic sensor that maintains energy balance at the cellular level and plays an important role in orchestrating intertissue metabolic signaling. AMPK regulates cell survival, metabolism, and cellular homeostasis basally as well as in response to various metabolic stresses. Studies so far show that the AMPK pathway is associated with neurodegeneration and CNS pathology, but the mechanisms involved remain unclear. AMPK dysregulation has been reported in neurodegenerative diseases such as amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and other neuropathies. AMPK activation appears to be both neuroprotective and pro-apoptotic, possibly dependent upon neural cell types, the nature of insults, and the intensity and duration of AMPK activation. While embryonic brain development in AMPK null mice appears to proceed normally without any overt structural abnormalities, our recent study confirmed the full impact of AMPK loss in the postnatal and aging brain. Our studies revealed that Ampk deletion in neurons increased basal neuronal excitability and reduced latency to seizure upon stimulation. Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in the brain. AMPK's regulation of aerobic glycolysis in astrocytic metabolism warrants further deliberation, particularly glycogen turnover and shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation. In this minireview, we focus on recent advances in AMPK and energy-sensing in the brain.

Journal ArticleDOI
TL;DR: In this article, the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects, such as inhibitory and excitatory effects on neurons and microglia.

Posted ContentDOI
TL;DR: This study found that AMP delayed brain aging in mice by inhibiting inflammatory and regulating intestinal microbes, which providing the possibility for the amelioration and treatment of aging and related metabolic diseases.
Abstract: Aronia melanocarpa is a natural medicinal plant that has a variety of biological activities, its fruit is often used for food and medicine. Aronia melanocarpa polysaccharide (AMP) is the main component of the Aronia melanocarpa fruit. This research evaluated the delay and protection of AMP obtained from Aronia melanocarpa fruit on aging mice by d-Galactose (D-Gal) induction and explored the effect of supplementing AMP on the metabolism of the intestinal flora of aging mice. The aging model was established by intraperitoneal injection of D-Gal (200 mg/kg to 1000 mg/kg) once per 3 days for 12 weeks. AMP (100 and 200 mg/kg) was given daily by oral gavage after 6 weeks of D-Gal-induced. The results showed that AMP treatment significantly improved the spatial learning and memory impairment of aging mice determined by the eight-arm maze test. H&E staining showed that AMP significantly reversed brain tissue pathological damage and structural disorders. AMP alleviated inflammation and oxidative stress injury in aging brain tissue by regulating the AMPK/SIRT1/NF-κB and Nrf2/HO-1 signaling pathways. Particularly, AMP reduced brain cell apoptosis and neurological deficits by activating the PI3K/AKT/mTOR signaling pathway and its downstream apoptotic protein family. Importantly, 16S rDNA analysis indicated the AMP treatment significantly retarded the aging process by improving the composition of intestinal flora and abundance of beneficial bacteria. In summary, this study found that AMP delayed brain aging in mice by inhibiting inflammation and regulating intestinal microbes, which providing the possibility for the amelioration and treatment of aging and related metabolic diseases.

Journal ArticleDOI
TL;DR: In this paper, the authors explored the role of TAX as a natural active substance on aging brain tissue induced by D-galactose (D-Gal) and determined the effect of supplementing TAX on the metabolism of the intestinal flora in aging bodies.
Abstract: Aging and aging-related metabolic complications are global problems that seriously threaten public health. Taxifolin (TAX) is a novel health food and has been widely proved to have a variety of biological activities used in food and medicine. However, the delayed effect of TAX on the aging process has not been investigated. The purpose of this study is to explore the role of TAX as a natural active substance on aging brain tissue induced by D-galactose (D-Gal) and to determine the effect of supplementing TAX on the metabolism of the intestinal flora in aging bodies. The aging model was established by intraperitoneal injection of D-Gal (800 mg kg−1) once per 3 days for 12 weeks, and TAX (20 and 40 mg kg−1) was administered daily by oral gavage after 6 weeks of induction with D-Gal. After testing aging mice in an eight-arm maze, the results showed that TAX treatment significantly restored spatial learning and memory impairment. Moreover, long-term D-Gal treatment incited cholinergic dysfunction of aging mice, and H&E staining revealed obvious histopathological damage and structural disorder in the hippocampus of mouse brain tissue, while TAX treatment significantly reversed these changes. Importantly, supplementing with TAX significantly mitigated oxidative stress injury by alleviating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) while increasing antioxidant enzymes. Furthermore, TAX decreased the apoptosis of the aging brain by regulating the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and activating nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear heme oxygenase-1 (HO-1), and NADH dehydrogenase quinone 1 (NQO1) to maximally moderate the oxidative stress injury that occurred after D-Gal induction. In addition, 16S rDNA analysis revealed that TAX treatment decelerated the D-gal-induced aging process by regulating the composition of the intestinal flora and abundance of beneficial bacteria, including Enterorhabdus, Clostridium, Bifidobacterium, and Parvibacter. In conclusion, the results of this study demonstrated that TAX alleviated oxidative stress injury in mice aged by D-Gal and also confirmed that TAX improved the aging process by regulating intestinal microbes, which provides the possibility of prevention and treatment for aging and metabolic disorders through the potential food health factors.

Journal ArticleDOI
TL;DR: In this paper, two co-chaperones of the heat shock protein (Hsp90), FK506-binding protein 52 (FKBP52) and activator of Hsp90 ATPase homolog 1 (Aha1), were found to promote tau aggregation in vitro and in the brains of tau transgenic mice.
Abstract: The microtubule associated protein tau is an intrinsically disordered phosphoprotein that accumulates under pathological conditions leading to formation of neurofibrillary tangles, a hallmark of Alzheimer’s disease (AD). The mechanisms that initiate the accumulation of phospho-tau aggregates and filamentous deposits are largely unknown. In the past, our work and others’ have shown that molecular chaperones play a crucial role in maintaining protein homeostasis and that imbalance in their levels or activity can drive tau pathogenesis. We have found two co-chaperones of the 90 kDa heat shock protein (Hsp90), FK506-binding protein 52 (FKBP52) and the activator of Hsp90 ATPase homolog 1 (Aha1), promote tau aggregation in vitro and in the brains of tau transgenic mice. Based on this, we hypothesized that increased levels of these chaperones could promote tau misfolding and accumulation in the brains of aged wild-type mice. We tested this hypothesis by overexpressing Aha1, FKBP52, or mCherry (control) proteins in the hippocampus of 9-month-old wild-type mice. After 7 months of expression, mice were evaluated for cognitive and pathological changes. Our results show that FKBP52 overexpression impaired spatial reversal learning, while Aha1 overexpression impaired associative learning in aged wild-type mice. FKBP52 and Aha1 overexpression promoted phosphorylation of distinct AD-relevant tau species. Furthermore, FKBP52 activated gliosis and promoted neuronal loss leading to a reduction in hippocampal volume. Glial activation and phospho-tau accumulation were also detected in areas adjacent to the hippocampus, including the entorhinal cortex, suggesting that after initiation these pathologies can propagate through other brain regions. Overall, our findings suggest a role for chaperone imbalance in the initiation of tau accumulation in the aging brain.

Journal ArticleDOI
TL;DR: An integrated, mechanistic model is proposed that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.

Journal ArticleDOI
TL;DR: In this paper, the female sex hormone estrogen has been ascribed potent neuroprotective properties, which can mediate gene transcription and rapid non-genomic actions, and participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior.
Abstract: The female sex hormone estrogen has been ascribed potent neuroprotective properties. It signals by binding and activating estrogen receptors that, depending on receptor subtype and upstream or downstream effectors, can mediate gene transcription and rapid non-genomic actions. In this way, estrogen receptors in the brain participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior. Circulating sex hormones decrease in the course of aging, more rapidly at menopause in women, and slower in men. This review will discuss what this drop entails in terms of modulating neuroprotection and resilience in the aging brain downstream of spatiotemporal estrogen receptor alpha (ERα) and beta (ERβ) signaling, as well as in terms of the sex differences observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, controversies related to ER expression in the brain will be discussed. Understanding the spatiotemporal signaling of sex hormones in the brain can lead to more personalized prevention strategies or therapies combating neurodegenerative diseases.

Journal ArticleDOI
19 May 2021-Cells
TL;DR: The role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate as discussed by the authors, however, there is no consensus about the occurrence of the CIN in the aging brain.
Abstract: Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.

Journal ArticleDOI
TL;DR: Here, changes in BBB permeability to endogenous blood water in the aging brain are investigated to support diagnostic and therapeutic strategies targeted at maintaining BBB integrity in aging patients.
Abstract: Purpose A fundamental goal in the drive to understand and find better treatments for dementia is the identification of the factors that render the aging brain vulnerable to neurodegenerative disease. Recent evidence indicates the integrity of the blood-brain barrier (BBB) to be an important component of functional failure underlying age-related cognitive decline. Practical and sensitive measurement is necessary, therefore, to support diagnostic and therapeutic strategies targeted at maintaining BBB integrity in aging patients. Here, we investigated changes in BBB permeability to endogenous blood water in the aging brain. Methods A multiple-echo-time arterial spin-labeling MRI technique, implemented on a 9.4T Bruker imaging system, was applied to 7- and 27-month-old mice to measure changes in water permeability across the BBB with aging. Results We observed that BBB water permeability was 32% faster in aged mice. This occurred along with a 2.1-fold increase in mRNA expression of aquaporin-4 water channels and a 7.1-fold decrease in mRNA expression of α-syntrophin protein, which anchors aquaporin-4 to the BBB. Conclusion Age-related changes to water permeability across the BBB can be captured using noninvasive noncontrast MRI techniques.

Posted ContentDOI
31 Mar 2021-bioRxiv
TL;DR: In this article, the intrinsic network architecture of the brain is continuously shaped by biological and behavioral factors from younger to older adulthood, and differences in functional networks can reveal how a lifetime of learning and lived experience can alter large-scale neurophysiological dynamics, offering a powerful lens into brain and cognitive aging.
Abstract: The intrinsic network architecture of the brain is continuously shaped by biological and behavioral factors from younger to older adulthood. Differences in functional networks can reveal how a lifetime of learning and lived experience can alter large-scale neurophysiological dynamics, offering a powerful lens into brain and cognitive aging. Quantifying these differences has been hampered by significant methodological challenges. Here, we use multi-echo fMRI and multi-echo ICA processing, individualized cortical parcellation methods, and multivariate (gradient and edge-level) functional connectivity analyses to provide a definitive account of the intrinsic functional architecture of the brain in older adulthood. Twenty minutes of resting-state multi-echo fMRI data were collected in younger (n=181) and older (n=120) adults. Dimensionality, the number of independent, non-noise BOLD components in the fMRI signal, was significantly reduced for older adults. Macroscale functional gradients were largely preserved. In contrast, edge-level functional connectivity was significantly altered. Within-network connections were weaker while connections between networks were stronger for older adults, and this connectivity pattern was associated with lower executive control functioning. Greater integration of sensory and motor regions with transmodal association cortices also emerged as a prominent feature of the aging connectome. These findings implicate network dedifferentiation, reflected here as reduced dimensionality within the BOLD signal and altered edge-level connectivity, as a global and putatively maladaptive feature of functional brain aging. However, greater coherence among specific networks may also signal adaptive functional reorganization in later life. By overcoming persistent and pervasive methodological challenges that have confounded previous research, the results provide a comprehensive account of the intrinsic functional architecture of the aging brain.

Journal ArticleDOI
TL;DR: In this paper, evidence for the beneficial neuroprotective effect of multiple flavonols is discussed and their multifactorial cellular pathways for the progressions of age-associated brain changes are identified.

Journal ArticleDOI
TL;DR: New rigorous meta-analyses of published age differences in EF-related brain activity suggest a larger heterogeneity of age-related differences in brain activity associated with EFs and encourage future research that pays greater attention to replicability and investigates age- related differences in deactivation.
Abstract: Healthy aging is associated with changes in cognitive performance, including executive functions (EFs) and their associated brain activation patterns. However, it has remained unclear which EF-rela...

Journal ArticleDOI
TL;DR: In this paper, the authors used a Bayesian state-space model to model individual learning states in the hippocampus and medial parietal areas of the human brain and found that activity in the RSC/parieto-occipital sulcus (POS) and anterior hippocampus did not change systematically as a function learning in older compared with younger adults across repeated episodes in the environment.
Abstract: Learning the spatial layout of a novel environment is associated with dynamic activity changes in the hippocampus and in medial parietal areas. With advancing age, the ability to learn spatial environments deteriorates substantially but the underlying neural mechanisms are not well understood. Here, we report findings from a behavioral and a fMRI experiment where healthy human older and younger adults of either sex performed a spatial learning task in a photorealistic virtual environment (VE). We modeled individual learning states using a Bayesian state-space model and found that activity in retrosplenial cortex (RSC)/parieto-occipital sulcus (POS) and anterior hippocampus did not change systematically as a function learning in older compared with younger adults across repeated episodes in the environment. Moreover, effective connectivity analyses revealed that the age-related learning deficits were linked to an increase in hippocampal excitability. Together, these results provide novel insights into how human aging affects computations in the brain's navigation system, highlighting the critical role of the hippocampus.SIGNIFICANCE STATEMENT Key structures of the brain's navigation circuit are particularly vulnerable to the deleterious consequences of aging, and declines in spatial navigation are among the earliest indicators for a progression from healthy aging to neurodegenerative diseases. Our study is among the first to provide a mechanistic account about how physiological changes in the aging brain affect the formation of spatial knowledge. We show that neural activity in the aging hippocampus and medial parietal areas is decoupled from individual learning states across repeated episodes in a novel spatial environment. Importantly, we find that increased excitability of the anterior hippocampus might constitute a potential neural mechanism for cognitive mapping deficits in old age.

Journal ArticleDOI
TL;DR: In this paper, the authors introduced partial eNOS-deficient mice as a model of age-dependent, spontaneous small-vessel disease (CSVD), which progressively worsened with advanced age.
Abstract: Age-related cerebral small-vessel disease (CSVD) is a major cause of stroke and dementia. Despite a widespread acceptance of small-vessel arteriopathy, lacunar infarction, diffuse white matter injury, and cognitive impairment as four cardinal features of CSVD, a unifying pathologic mechanism of CSVD remains elusive. Herein, we introduce partial endothelial nitric oxide synthase (eNOS)-deficient mice as a model of age-dependent, spontaneous CSVD. These mice developed cerebral hypoperfusion and blood-brain barrier leakage at a young age, which progressively worsened with advanced age. Their brains exhibited elevated oxidative stress, astrogliosis, cerebral amyloid angiopathy, microbleeds, microinfarction, and white matter pathology. Partial eNOS-deficient mice developed gait disturbances at middle age, and hippocampus-dependent memory deficits at older ages. These mice also showed enhanced expression of bone morphogenetic protein 4 (BMP4) in brain pericytes before myelin loss and white matter pathology. Because BMP4 signaling not only promotes astrogliogenesis but also blocks oligodendrocyte differentiation, we posit that paracrine actions of BMP4, localized within the neurovascular unit, promote white matter disorganization and neurodegeneration. These observations point to BMP4 signaling pathway in the aging brain vasculature as a potential therapeutic target. Finally, because studies in partial eNOS-deficient mice corroborated recent clinical evidence that blood-brain barrier disruption is a primary cause of white matter pathology, the mechanism of impaired nitric oxide signaling-mediated CSVD warrants further investigation.

Journal ArticleDOI
TL;DR: In this article, the authors focus on the morphological and functional alterations that the aging brain undergoes affecting sleep and the circadian clock in both human and rodent models and highlight the influence of physical exercise as a beneficial lifestyle intervention, and its effect on healthy aging and longevity.

Journal ArticleDOI
TL;DR: The role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease and other disorders, is discussed in this paper.
Abstract: Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria–autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents.