scispace - formally typeset
Search or ask a question
Topic

Aging brain

About: Aging brain is a research topic. Over the lifetime, 1255 publications have been published within this topic receiving 66405 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The analysis of the results together suggests that iron accumulation and oxidative stress interact at multiple levels that include transcriptional and post-transcriptional mechanisms to bring about changes in the expression levels of TfR1 and ferritin and also alterations in Aβ peptide metabolism in the aging rat brain.
Abstract: The altered metabolism of iron impacts the brain function in multiple deleterious ways during normal aging as well as in Alzheimer's disease. We have shown in this study that chelatable iron accumulates in the aged rat brain along with overexpression of transferrin receptor 1 (TfR1) and ferritin, accompanied by significant alterations in amyloid-β (Aβ) peptide homeostasis in the aging brain, such as an increased production of the amyloid-β protein precursor, a decreased level of neprilysin, and increased accumulation of Aβ42. When aged rats are given daily the iron chelator, deferasirox, over a period of more than 4 months starting from the 18th month, the age-related accumulation of iron and overexpression of TfR1 and ferritin in the brain are significantly prevented. More interestingly, the chelator treatment also considerably reverses the altered Aβ peptide metabolism in the aging brain implying a significant role of iron in the latter phenomenon. Further, other results indicate that iron accumulation results in oxidative stress and the activation of NF-κB in the aged rat brain, which are also reversed by the deferasirox treatment. The analysis of the results together suggests that iron accumulation and oxidative stress interact at multiple levels that include transcriptional and post-transcriptional mechanisms to bring about changes in the expression levels of TfR1 and ferritin and also alterations in Aβ peptide metabolism in the aging rat brain. The efficacy of deferasirox in preventing age-related changes in iron and Aβ peptide metabolism in the aging brain, as shown here, has obvious therapeutic implications for Alzheimer's disease.

24 citations

Journal ArticleDOI
TL;DR: Diet and inflammation may be useful experimental variations in exploring the pathogenesis of sIBM and various subsets of the usual aging changes in aging brain, muscle, and vessels can be attenuated in rodents by caloric intake and in humans by drugs with anti-inflammatory and anticoagulant activities.
Abstract: Sporadic inclusion-body myositis (sIBM) is an age-related condition manifested after midlife. This review points out salient features of sIBM that are shared with normal aging in muscle and with inflammatory changes in vascular atheromas and senile plaques of Alzheimer disease (AD). The amyloid precursor protein (APP) and derived Abeta peptides are found in both AD and sIBM. Because transgenic expression of human APP induces sIBM like changes, it is of potential interest that an inducer of APP, IL-1, increases during aging in mouse muscle. Because various subsets of the usual aging changes in aging brain, muscle, and vessels can be attenuated in rodents by caloric intake and possibly in humans by drugs with anti-inflammatory and anticoagulant activities, this study suggests that diet and inflammation may be useful experimental variations in exploring the pathogenesis of sIBM.

24 citations

Journal ArticleDOI
01 Jul 2019
TL;DR: Results indicated that the progression of cognitive impairment is indeed affected by changes in microbiota induced by probiotics and prebiotics, and potential future applications center around combatting neurodegeneration and inflammation associated not only with aging but also with the damaging posttraumatic effects of ischemic stroke.
Abstract: The process of aging underlies many degenerative disorders that arise in the living body, including gradual neuronal loss of the hippocampus that often leads to decline in both memory and cognition. Recent evidence has shown a significant connection between gut microbiota and brain function, as butyrate production by microorganisms is believed to activate the secretion of brain-derived neurotrophic factor (BDNF). To investigate whether modification of intestinal microbiota could impact cognitive decline in the aging brain, Romo-Araiza et al. conducted a study to test how probiotic and prebiotic supplementation impacted spatial and associative memory in middle-aged rats. Their results showed that rats supplemented with the symbiotic (both probiotic and prebiotic) treatment performed significantly better than other groups in the spatial memory test, though not in that of associative memory. Their data also reported that this improvement correlated with increased levels of BDNF, decreased levels of pro-inflammatory cytokines, and better electrophysiological outcomes in the hippocampi of the symbiotic group. Thus, the results indicated that the progression of cognitive impairment is indeed affected by changes in microbiota induced by probiotics and prebiotics. Potential future applications of these findings center around combatting neurodegeneration and inflammation associated not only with aging but also with the damaging posttraumatic effects of ischemic stroke.

24 citations

Journal ArticleDOI
TL;DR: An age-related decay of primary visual cortical thickness that was significantly correlated with a decrease in global and multiple layer retinal thicknesses was found and associations with other cortical regions suggest that retinal status may index cortical integrity in general.
Abstract: How aging concomitantly modulates the structural integrity of the brain and retina in healthy individuals remains an outstanding question. Given the strong bottom-up retinocortical connectivity, it is important to study how these structures co-evolve during healthy aging in order to unravel mechanisms that may affect the physiological integrity of both structures. For the 56 participants in the study, primary visual cortex (BA17), as well as frontal, parietal and temporal regions thicknesses were measured in T1-weighted magnetic resonance imaging (MRI), and retinal macular thickness (10 neuroretinal layers) was measured by optical coherence tomography (OCT) imaging. We investigated the statistical association of these measures and their age dependence. We found an age-related decay of primary visual cortical thickness that was significantly correlated with a decrease in global and multiple layer retinal thicknesses. The atrophy of both structures might jointly account for the decline of various visual capacities that accompany the aging process. Furthermore, associations with other cortical regions suggest that retinal status may index cortical integrity in general.

24 citations


Network Information
Related Topics (5)
Alzheimer's disease
21K papers, 1.7M citations
89% related
Hippocampal formation
30.6K papers, 1.7M citations
87% related
Hippocampus
34.9K papers, 1.9M citations
87% related
Prefrontal cortex
24K papers, 1.9M citations
85% related
Dementia
72.2K papers, 2.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202256
202179
202072
201978
201872