scispace - formally typeset
Search or ask a question
Topic

Aging brain

About: Aging brain is a research topic. Over the lifetime, 1255 publications have been published within this topic receiving 66405 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson’s disease, amyotrophic lateral sclerosis, and dementia, and emphasized nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.
Abstract: The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.

14 citations

Journal ArticleDOI
29 Nov 2010-PLOS ONE
TL;DR: This study demonstrates that WldS-mediated synaptic protection in the CNS occurs independently of age, but is sensitive to gene dose, which suggests that the WaldS gene, and in particular its downstream endogenous effector pathways, may be potentially useful therapeutic agents for conferring synaptic protectionIn the aging brain.
Abstract: Background: Disruption of synaptic connectivity is a significant early event in many neurodegenerative conditions affecting the aging CNS, including Alzheimer’s disease and Parkinson’s disease. Therapeutic approaches that protect synapses from degeneration in the aging brain offer the potential to slow or halt the progression of such conditions. A range of animal models expressing the slow Wallerian Degeneration (Wld S ) gene show robust neuroprotection of synapses and axons from a wide variety of traumatic and genetic neurodegenerative stimuli in both the central and peripheral nervous systems, raising that possibility that Wld S may be useful as a neuroprotective agent in diseases with synaptic pathology. However, previous studies of neuromuscular junctions revealed significant negative effects of increasing age and positive effects of gene-dose on Wld S -mediated synaptic protection in the peripheral nervous system, raising doubts as to whether Wld S is capable of directly conferring synapse protection in the aging brain. Methodology/Principal Findings: We examined the influence of age and gene-dose on synaptic protection in the brain of mice expressing the Wld S gene using an established cortical lesion model to induce synaptic degeneration in the striatum. Synaptic protection was found to be sensitive to Wld S gene-dose, with heterozygous Wld S mice showing approximately half the level of protection observed in homozygous Wld S mice. Increasing age had no influence on levels of synaptic protection. In contrast to previous findings in the periphery, synapses in the brain of old Wld S mice were just as strongly protected as those in young mice. Conclusions/Significance: Our study demonstrates that Wld S -mediated synaptic protection in the CNS occurs independently of age, but is sensitive to gene dose. This suggests that the Wld S gene, and in particular its downstream endogenous effector pathways, may be potentially useful therapeutic agents for conferring synaptic protection in the aging brain.

14 citations

Journal ArticleDOI
TL;DR: The effects of stress exposure and aging on medial prefrontal cortical glial subpopulations are examined and it is shown that the changes found within microglia are inversely correlated with the density of dendritic spines on layer III pyramidal cells, suggesting microglian role in synaptic health within the aging brain.
Abstract: Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC). Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR) with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain.

14 citations

Journal ArticleDOI
TL;DR: The lead review (Alcedo et al., 2013) in this collection of articles introduces different aspects of neuronal inputs and outputs of signaling pathways that affect homeostasis, and consequently longevity and aging.
Abstract: The connections between the nervous system, aging and longevity are manifold and profound. On the one hand, the nervous system plays an important role in processing complex information from the environment, which has a major influence on an animal's aging and longevity. Accordingly, environmental signals are received and integrated by this organ system, leading to diverse physiological outputs that can have pervasive effects on homeostasis and lifespan. Thus, an animal's nervous system not only controls its homeostatic responses but can also alter its lifespan and aging process. On the other hand, similar to the feedback regulation that characterizes homeostatic mechanisms, aging also impacts the functional state of the nervous system, as exemplified, for instance, by the prevalence of age-associated neurodegenerative diseases. The lead review (Alcedo et al., 2013) in this collection of articles introduces different aspects of neuronal inputs and outputs of signaling pathways that affect homeostasis, and consequently longevity and aging. A number of these inputs, which can be detected by sensory neurons acting at the interface between an animal's external and internal environments, have been found to either shorten or lengthen lifespan. Jeong et al. (2012) describe more explicitly how gustatory, olfactory and thermosensory cues affect invertebrate lifespan and the possible implications on mammalian aging. In mammals, these sensory cues likely modulate hypothalamic function and the neuroendocrine systems required for maintaining homeostasis [reviewed in Alcedo et al. (2010, 2013); Jeong et al. (2012)]. Consistent with this notion, Bartfai and Conti (2012) discuss how nutrient signals act on heat-sensing hypothalamic neurons to regulate energy expenditure by maintaining mammalian core body temperature, which has been previously shown to affect lifespan (Conti et al., 2006). In addition to nutritional and temperature cues, the nervous system can sense other environmental cues and stressors (Alcedo et al., 2013). Iranon and Miller (2012) focus on one such stressor—i.e., low oxygen availability, which compromises many important physiological processes; in their paper, the authors review the mechanisms animals use to maintain oxygen homeostasis in response to hypoxia. In contrast, Kagias et al. (2012) elaborate on different types of stressors and the neuronal responses that these elicit. Besides extrinsic environmental factors, they also discuss how the processes of development and aging generate intrinsic stress (Kagias et al., 2012). Neuronal inputs are integrated by neural circuits, which can then lead to longevity-modulating outputs. Because of the central role that calcium signaling plays in processing neural information, Nikoletopoulou and Tavernarakis (2012) highlight the importance of maintaining calcium homeostasis. They discuss how loss of calcium homeostasis increases the risk for neurodegenerative diseases and how aging itself can impair this homeostasis (Nikoletopoulou and Tavernarakis, 2012). Calcium homeostasis requires the coordinated function of different organelles, including that of the mitochondria (Nikoletopoulou and Tavernarakis, 2012). Troulinaki and Bano (2012) further underscores the involvement of mitochondria in known longevity pathways and their dual role in aging and neurodegeneration. They review how the decline of mitochondrial activity significantly contributes to age-related impairment of neural circuits (Troulinaki and Bano, 2012). Consistent with this idea, several reviews discuss evidence suggesting that impaired, aging neurons can modulate the functional outputs of the nervous system, such as protein homeostasis (David, 2012), learning, memory (Stein and Murphy, 2012), and emotional state (McKinney et al., 2012). The review of David (2012) focuses on the role of protein aggregation and protein-quality control in the aging brain. Of note, several reviews discuss how neuronal signaling upon mitochondrial dysfunction, in addition to other stimuli, plays a role in coordinating the mitochondrial unfolded protein response, which in turn affects protein misfolding and polyglutamine aggregation in non-neuronal tissues (David, 2012; Kagias et al., 2012; Alcedo et al., 2013). McKinney et al. (2012) and Stein and Murphy (2012) present other mechanisms through which aging neurons affect the rate of organismal senescence. The impact of neuronal aging on cognitive and psychological states can be observed through consistent and specific age-dependent gene expression changes in the brain. The review by McKinney et al. (2012) also supports the important notion that naturally occurring individual variation in the rates of gene expression changes during brain aging can determine the onset of senescence and of developing age-related brain disorders. Last but not least, the paper by Huffman (2012) reviews the intimate links between the regulation of development and aging by discussing how patterns of neocortical gene expression and neocortical sensory-motor axonal connections develop and change throughout the lifespan of the animal and how they affect aging. Collectively, the reviews in this Special Topic provide ample evidence from recent literature that show how aging is modulated by a complex interplay between the environment, genes, signaling networks and tissues. In particular, they highlight the key role in aging and longevity played by the nervous system, which is the central integrator of information from both the external environment and the inner “milieu” intrinsic to the organism. In discussing the state-of-the-art, these papers also illustrate key areas for future work. For example, our current understanding of the sensory perception of environmental cues and the signals that integrate and process these cues in affecting lifespan and aging is still very limited. Moreover, major and unresolved questions remain about the mechanistic relationship between the neuronal regulation of lifespan and the senescence of neuronal and cognitive function. Finally, we still lack essential information on the evolutionary conservation of the neuronal inputs and outputs of longevity and aging. Such information might prove to be extremely helpful in generating therapeutic/pharmacological interventions in the future. As is clearly demonstrated by the review articles in this Special Topic, the neurobiology of aging is a rapidly developing field; at the same time, numerous difficult problems remain to be solved in future work, making this vibrant field a major frontier in aging research.

14 citations

Book ChapterDOI
01 Jan 1985
TL;DR: Neurochemical investigations demonstrate that normal brain aging is characterized by a moderate decrease in glycolytic turnover capacity, which lowers acetyl coenzyme A, necessary for the biosynthesis of acetylcholine.
Abstract: Neurochemical investigations demonstrate that normal brain aging is characterized by a moderate decrease in glycolytic turnover capacity. There is an age-dependent increase in soluble hexokinase activity and a significant decrease in activity of the key glycolytic enzyme phosphofructokinase. This decrease in the glycolytic turnover capacity lowers acetyl coenzyme A, necessary for the biosynthesis of acetylcholine. Therefore normal aging of the brain is additionally characterized by a moderate decline of the cholinergic activity. The monaminergic neurotransmitters also decrease, which results in a neurotransmitter imbalance.

14 citations


Network Information
Related Topics (5)
Alzheimer's disease
21K papers, 1.7M citations
89% related
Hippocampal formation
30.6K papers, 1.7M citations
87% related
Hippocampus
34.9K papers, 1.9M citations
87% related
Prefrontal cortex
24K papers, 1.9M citations
85% related
Dementia
72.2K papers, 2.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202256
202179
202072
201978
201872