scispace - formally typeset
Search or ask a question
Topic

Aging brain

About: Aging brain is a research topic. Over the lifetime, 1255 publications have been published within this topic receiving 66405 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review aims to examine the role of the ketogenic diet in Alzheimer’s disease progression and to outline specific aspects of the nutritional profile providing a rationale for the implementation of dietary interventions as a therapeutic strategy for Alzheimer's disease.
Abstract: At present, the prevalence of Alzheimer’s disease, a devastating neurodegenerative disorder, is increasing. Although the mechanism of the underlying pathology is not fully uncovered, in the last years, there has been significant progress in its understanding. This includes: Progressive deposition of amyloid β-peptides in amyloid plaques and hyperphosphorylated tau protein in intracellular as neurofibrillary tangles; neuronal loss; and impaired glucose metabolism. Due to a lack of effective prevention and treatment strategy, emerging evidence suggests that dietary and metabolic interventions could potentially target these issues. The ketogenic diet is a very high-fat, low-carbohydrate diet, which has a fasting-like effect bringing the body into a state of ketosis. The presence of ketone bodies has a neuroprotective impact on aging brain cells. Moreover, their production may enhance mitochondrial function, reduce the expression of inflammatory and apoptotic mediators. Thus, it has gained interest as a potential therapy for neurodegenerative disorders like Alzheimer’s disease. This review aims to examine the role of the ketogenic diet in Alzheimer’s disease progression and to outline specific aspects of the nutritional profile providing a rationale for the implementation of dietary interventions as a therapeutic strategy for Alzheimer’s disease.

159 citations

Journal ArticleDOI
TL;DR: The objective was to investigate the effect of sex on cognitive decline within the context of amyloid β burden and apolipoprotein E genotype.
Abstract: Introduction Our objective was to investigate the effect of sex on cognitive decline within the context of amyloid β (Aβ) burden and apolipoprotein E genotype. Methods We analyzed sex-specific effects on Aβ-positron emission tomography, apolipoprotein, and rates of change on the Preclinical Alzheimer Cognitive Composite-5 across three cohorts, such as the Alzheimer's Disease Neuroimaging Initiative, Australian Imaging, Biomarker and Lifestyle, and Harvard Aging Brain Study (n = 755; clinical dementia rating = 0; age (standard deviation) = 73.6 (6.5); female = 55%). Mixed-effects models of cognitive change by sex, Aβ-positron emission tomography, and apolipoprotein e4 were examined with quadratic time effects over a median of 4 years of follow-up. Results Apolipoprotein e4 prevalence and Aβ burden did not differ by sex. Sex did not directly influence cognitive decline. Females with higher Aβ exhibited faster decline than males. Post hoc contrasts suggested that females who were Aβ and apolipoprotein e4 positive declined faster than their male counterparts. Discussion Although Aβ did not differ by sex, cognitive decline was greater in females with higher Aβ. Our findings suggest that sex may play a modifying role on risk of Alzheimer's disease–related cognitive decline.

158 citations

Journal ArticleDOI
TL;DR: Vascular risk was associated with prospective cognitive decline in clinically normal older adults, both alone and synergistically with A&bgr; burden, and may complement imaging biomarkers in assessing risk of prospective Cognitive decline in preclinical Alzheimer disease.
Abstract: Importance Identifying asymptomatic individuals at high risk of impending cognitive decline because of Alzheimer disease is crucial for successful prevention of dementia. Vascular risk and β-amyloid (Aβ) pathology commonly co-occur in older adults and are significant causes of cognitive impairment. Objective To determine whether vascular risk and Aβ burden act additively or synergistically to promote cognitive decline in clinically normal older adults; and, secondarily, to evaluate the unique influence of vascular risk on prospective cognitive decline beyond that of commonly used imaging biomarkers, including Aβ burden, hippocampal volume, fludeoxyglucose F18–labeled (FDG) positron emission tomography (PET), and white matter hyperintensities, a marker of cerebrovascular disease. Design, Setting, and Participants In this longitudinal observational study, we examined clinically normal older adults from the Harvard Aging Brain Study. Participants were required to have baseline imaging data (FDG-PET, Aβ-PET, and magnetic resonance imaging), baseline medical data to quantify vascular risk, and at least 1 follow-up neuropsychological visit. Data collection began in 2010 and is ongoing. Data analysis was performed on data collected between 2010 and 2017. Main Outcomes and Measures Vascular risk was quantified using the Framingham Heart Study general cardiovascular disease (FHS-CVD) risk score. We measured Aβ burden with Pittsburgh Compound-B PET. Cognition was measured annually with the Preclinical Alzheimer Cognitive Composite. Models were corrected for baseline age, sex, years of education, and apolipoprotein E e4 status. Results Of the 223 participants, 130 (58.3%) were women. The mean (SD) age was 73.7 (6.0) years, and the mean (SD) follow-up time was 3.7 (1.2) years. Faster cognitive decline was associated with both a higher FHS-CVD risk score (β = −0.064; 95% CI, −0.094 to −0.033;P Conclusions and Relevance In this study, vascular risk was associated with prospective cognitive decline in clinically normal older adults, both alone and synergistically with Aβ burden. Vascular risk may complement imaging biomarkers in assessing risk of prospective cognitive decline in preclinical Alzheimer disease.

157 citations

Journal ArticleDOI
TL;DR: Accumulating evidence suggests that RNA oxidation is a feature in neurons of aging brain and more prominently observed in vulnerable neurons at early-stage of age-associated neurodegenerative disorders, indicating thatRNA oxidation actively contributes to the background, the onset, and the development of the disorders.
Abstract: An age-associated increase in oxidative damage to nucleic acids, predominantly to RNA, has been recently demonstrated in neurons of human and rodent brains, which may play a fundamental role in the development of age-associated neurodegeneration. Indeed, more prominent levels of neuronal RNA oxidation compared to normal aging have been described in neurodegenerative disorders including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and amyotrophic lateral sclerosis. Moreover, oxidative damage to RNA has been found also in cellular and animal model of neurodegeneration. Oxidative RNA modification can occur not only in protein-coding RNAs but also in non-coding RNAs that are recently revealed to contribute towards the complexity of the mammalian brain. It has been hypothesized that RNA oxidation causes aberrant expression of microRNAs and proteins and subsequently initiates inappropriate cell fate pathways. While less lethal than mutations in the genome and not inheritable, such sublethal damage to cells might be associated with underlying mechanisms of degeneration, especially age-associated neurodegeneration. Of particular interest, the accumulating evidence obtained from studies on either human samples or experimental models coincidentally suggests that RNA oxidation is a feature in neurons of aging brain and more prominently observed in vulnerable neurons at early-stage of age-associated neurodegenerative disorders, indicating that RNA oxidation actively contributes to the background, the onset, and the development of the disorders. Further investigations aimed at understanding of the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative disorders and lead to better therapeutic strategies.

156 citations

Journal ArticleDOI
TL;DR: This review surveys convergent data from animal and human studies that have contributed significantly to understanding of the brain-behavior relationships in the hippocampal network, particularly in the aging brain.

156 citations


Network Information
Related Topics (5)
Alzheimer's disease
21K papers, 1.7M citations
89% related
Hippocampal formation
30.6K papers, 1.7M citations
87% related
Hippocampus
34.9K papers, 1.9M citations
87% related
Prefrontal cortex
24K papers, 1.9M citations
85% related
Dementia
72.2K papers, 2.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202256
202179
202072
201978
201872