scispace - formally typeset
Search or ask a question
Topic

Aging brain

About: Aging brain is a research topic. Over the lifetime, 1255 publications have been published within this topic receiving 66405 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The current knowledge on the role of ncRNAs in synaptic plasticity, learning, and memory in the broader context of the aging brain and associated memory loss is reviewed.

39 citations

Journal ArticleDOI
TL;DR: Time-dependent changes in brain activity were assessed in a group of older adults who maintained good physical and cognitive health at years 1, 3, 5, 7, and 9 of the Baltimore Longitudinal Study of Aging neuroimaging study, suggesting that there are distinctive patterns of age-related functional decline and compensatory activity over time.

39 citations

Journal ArticleDOI
TL;DR: Ectopic expression of the AFF-1, a protein that regulates self-fusion, can rejuvenate the regenerative potential of dendrites following injury in aging C. elegans.
Abstract: The aging brain undergoes structural changes that affect brain homeostasis, neuronal function and consequently cognition. The complex architecture of dendritic arbors poses a challenge to understanding age-dependent morphological alterations, behavioral plasticity and remodeling following brain injury. Here, we use the PVD polymodal neurons of C. elegans as a model to study how aging affects neuronal plasticity. Using confocal live imaging of C. elegans PVD neurons, we demonstrate age-related progressive morphological alterations of intricate dendritic arbors. We show that mutations in daf-2, which encodes an insulin-like growth factor receptor ortholog, fail to inhibit the progressive morphological aging of dendrites and do not prevent the minor decline in response to harsh touch during aging. We uncovered that PVD aging is characterized by a major decline in the regenerative potential of dendrites following experimental laser dendrotomy. Furthermore, the remodeling of transected dendritic trees by AFF-1-mediated self-fusion can be restored in old animals by daf-2 mutations, and can be differentially re-established by ectopic expression of the fusion protein AFF-1. Thus, ectopic expression of the fusogen AFF-1 in the PVD and mutations in daf-2 differentially rejuvenate some aspects of dendritic regeneration following injury.

39 citations

Journal ArticleDOI
TL;DR: It is shown by in situ hybridization that Sirt1 expression is modified in specific areas of the brain in mice upon aging, and that gender also impacts on this regulation.

39 citations

Journal ArticleDOI
TL;DR: The findings suggest that caloric restriction may provide neuroprotection to the aging brain by preserving DNA repair enzymes in their intact form, and/or upregulating specific antiapoptotic proteins involved in neuronal cell death.
Abstract: Aging may pose a challenge to the central nervous system, increasing its susceptibility to apoptotic events. Recent findings indicate that caloric restriction (CR) may have a profound effect on brain function and vulnerability to injury and diseases, by enhancing neuroprotection, stimulating the production of new neurons, and increasing synaptic plasticity. Apoptosis and apoptotic regulatory proteins in the brain frontal cortex of 6-month-old ad libitum fed (6AD), 26-month-old ad libitum fed (26AD), and 26-month-old caloric-restricted (26CR) male Fischer 344 rats (40% restriction compared to ad libitum fed) were investigated. Levels of Poly-ADP ribose polymerase (PARP-DNA repair enzyme; its cleaved 89 kDA fragment is a marker of apoptosis), cytoplasmic histone-associated DNA fragments, and X chromosome-linked inhibitor of apoptosis (XIAP--an endogenous apoptosis inhibitor) were determined. A significant age-associated increase in PARP was found, which was ameliorated in the frontal cortices of the CR rats. No significant differences in cytoplasmic histone-associated DNA fragments with age or with CR were observed. XIAP levels significantly increased with age in the brains of the ad libitum animals, while CR animals exhibited the highest levels of this inhibitor compared to all groups. Our findings suggest that caloric restriction may provide neuroprotection to the aging brain by preserving DNA repair enzymes in their intact form, and/or upregulating specific antiapoptotic proteins involved in neuronal cell death.

38 citations


Network Information
Related Topics (5)
Alzheimer's disease
21K papers, 1.7M citations
89% related
Hippocampal formation
30.6K papers, 1.7M citations
87% related
Hippocampus
34.9K papers, 1.9M citations
87% related
Prefrontal cortex
24K papers, 1.9M citations
85% related
Dementia
72.2K papers, 2.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202256
202179
202072
201978
201872