scispace - formally typeset
Search or ask a question

Showing papers on "Air quality index published in 2015"


Journal ArticleDOI
17 Sep 2015-Nature
TL;DR: It is found that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic.
Abstract: Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050.

3,848 citations


Journal ArticleDOI
TL;DR: In this paper, a review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models and takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.
Abstract: Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a by-product of the very oxidation chemistry it largely initiates. Much effort is focussed on the reduction of surface levels of ozone owing to its health impacts but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve due to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate-change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.

877 citations


Journal ArticleDOI
TL;DR: In this paper, a review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements, while low vegetation close to sources can improve air quality by increasing deposition.

739 citations


Journal ArticleDOI
20 Aug 2015-PLOS ONE
TL;DR: Air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3, is made available, and Kriging interpolation is applied to four months of data to derive pollution maps for eastern China.
Abstract: China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China.

608 citations


Journal ArticleDOI
TL;DR: Data strongly suggest that effects have no threshold within the studied range of ambient concentrations, can occur at levels close to PM2.5 background concentrations and that they follow a mostly linear concentration–response function.
Abstract: Despite past improvements in air quality, very large parts of the population in urban areas breathe air that does not meet European standards let alone the health-based World Health Organisation Air Quality Guidelines. Over the last 10 years, there has been a substantial increase in findings that particulate matter (PM) air pollution is not only exerting a greater impact on established health endpoints, but is also associated with a broader number of disease outcomes. Data strongly suggest that effects have no threshold within the studied range of ambient concentrations, can occur at levels close to PM2.5 background concentrations and that they follow a mostly linear concentration–response function. Having firmly established this significant public health problem, there has been an enormous effort to identify what it is in ambient PM that affects health and to understand the underlying biological basis of toxicity by identifying mechanistic pathways—information that in turn will inform policy makers how best to legislate for cleaner air. Another intervention in moving towards a healthier environment depends upon the achieving the right public attitude and behaviour by the use of optimal air pollution monitoring, forecasting and reporting that exploits increasingly sophisticated information systems. Improving air quality is a considerable but not an intractable challenge. Translating the correct scientific evidence into bold, realistic and effective policies undisputedly has the potential to reduce air pollution so that it no longer poses a damaging and costly toll on public health.

470 citations


Journal ArticleDOI
Xiao Feng1, Qi Li1, Yajie Zhu1, Junxiong Hou1, Lingyan Jin1, Jingjie Wang1 
TL;DR: In this article, a novel hybrid model combining air mass trajectory analysis and wavelet transformation to improve the artificial neural network (ANN) forecast accuracy of daily average concentrations of PM2.5 two days in advance is presented.

440 citations


Journal ArticleDOI
TL;DR: The findings can be utilized to improve the understanding of the mechanisms that produce air pollution, enhance the forecast accuracy of the air pollution under different meteorological conditions, and provide effective measures for mitigating the pollution.

378 citations


Proceedings ArticleDOI
10 Aug 2015
TL;DR: This paper forecasts the reading of an air quality monitoring station over the next 48 hours, using a data-driven method that considers current meteorological data, weather forecasts, and air quality data of the station and that of other stations within a few hundred kilometers.
Abstract: In this paper, we forecast the reading of an air quality monitoring station over the next 48 hours, using a data-driven method that considers current meteorological data, weather forecasts, and air quality data of the station and that of other stations within a few hundred kilometers. Our predictive model is comprised of four major components: 1) a linear regression-based temporal predictor to model the local factors of air quality, 2) a neural network-based spatial predictor to model global factors, 3) a dynamic aggregator combining the predictions of the spatial and temporal predictors according to meteorological data, and 4) an inflection predictor to capture sudden changes in air quality. We evaluate our model with data from 43 cities in China, surpassing the results of multiple baseline methods. We have deployed a system with the Chinese Ministry of Environmental Protection, providing 48-hour fine-grained air quality forecasts for four major Chinese cities every hour. The forecast function is also enabled on Microsoft Bing Map and MS cloud platform Azure. Our technology is general and can be applied globally for other cities.

351 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants).
Abstract: . This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr−1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.

351 citations


Journal ArticleDOI
TL;DR: Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM.
Abstract: Multiple linkages connect air quality and climate change. Many air pollutant sources also emit carbon dioxide (CO2), the dominant anthropogenic greenhouse gas (GHG). The two main contributors to non-attainment of U.S. ambient air quality standards, ozone (O3) and particulate matter (PM), interact with radiation, forcing climate change. PM warms by absorbing sunlight (e.g., black carbon) or cools by scattering sunlight (e.g., sulfates) and interacts with clouds; these radiative and microphysical interactions can induce changes in precipitation and regional circulation patterns. Climate change is expected to degrade air quality in many polluted regions by changing air pollution meteorology (ventilation and dilution), precipitation and other removal processes, and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Together, these processes shape distributions and extreme episodes of O3 and PM. Global modeling indicates that as air pollution programs red...

334 citations


Journal ArticleDOI
TL;DR: The most recent synthesis of climate change research as presented in the fifth IPCC Assessment Report (AR5) states that the warming of the climate system is unequivocal, recognizing the dominant cause as human influence, and providing evidence for a 43% higher total anthropogenic radiative forcing than was reported in 2005 from the previous assessment report.
Abstract: Climate change and air pollution are critical environmental issues both in the here and now and for the coming decades. A recent OECD report found that unless action is taken, air pollution will be the largest environmental cause of premature death worldwide by 2050. Already, air pollution levels in Asia are far above acceptable levels for human health, and even in Europe, the vast majority of the urban population was exposed to air pollution concentrations exceeding the EU daily limit values, and especially the stricter WHO air quality guidelines in the past decade. The most recent synthesis of climate change research as presented in the fifth IPCC Assessment Report (AR5) states that the warming of the climate system is unequivocal, recognizing the dominant cause as human influence, and providing evidence for a 43% higher total (from 1750 to the present) anthropogenic radiative forcing (RF) than was reported in 2005 from the previous assessment report.

Journal ArticleDOI
TL;DR: A comprehensive review on urban air quality management plan (UAQMP) is presented in this paper, where the authors identify the air quality control regions based on ambient air quality status and initiate a time bound program involving all stakeholders to develop UAQMPs.

Journal ArticleDOI
12 Dec 2015-Sensors
TL;DR: This paper classifies the existing works into three categories as Static Sensor Network (SSN), Community Sensor network (CSN) and Vehicle sensor network (VSN) based on the carriers of the sensors.
Abstract: The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

Journal ArticleDOI
TL;DR: In this article, a general overview of single treatment techniques such as mechanical and electrical filtration, adsorption, ozonation, photolysis, photocatalytic oxidation, biological processes, and membrane separation is presented.
Abstract: Indoor air pollution is a complex issue involving a wide diversity and variability of pollutants that threats human health In this context, major efforts should be made to enhance indoor air quality Thus, it is important to start by the control of indoor pollution sources Nevertheless, when the suppression or minimization of emission sources is insufficient, technically unfeasible, or economically unviable, abatement technologies have to be used This review presents a general overview of single treatment techniques such as mechanical and electrical filtration, adsorption, ozonation, photolysis, photocatalytic oxidation, biological processes, and membrane separation Since there is currently no technology that can be considered fully satisfactory for achieving “cleaner” indoor air, special attention is paid to combined purification technologies or innovative alternatives that are currently under research and have not yet been commercialized (plasma-catalytic hybrid systems, hybrid ozonation systems, biofilter-adsorption systems, etc) These systems seem to be a good opportunity as they integrate synergetic advantages to achieve good indoor air quality

Journal ArticleDOI
TL;DR: This paper analyzes one of the largest spatially resolved UFP data set publicly available today containing over 50 million measurements and achieves a 26% reduction in the root-mean-square error-a standard metric to evaluate the accuracy of air quality models-of pollution maps with semi-daily temporal resolution.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the evidence on the efficacy of LEZs to improve urban air quality in five EU countries (Denmark, Germany, Netherlands, Italy and UK), and concluded that there have been mixed results.

Journal ArticleDOI
TL;DR: The WHO project “Health risks of air pollution in Europe—HRAPIE” was implemented to provide the evidence-based concentration–response functions for quantifying air pollution health impacts to support the 2013 revision of the air quality policy for the EU.
Abstract: Quantitative estimates of air pollution health impacts have become an increasingly critical input to policy decisions. The WHO project “Health risks of air pollution in Europe—HRAPIE” was implemented to provide the evidence-based concentration–response functions for quantifying air pollution health impacts to support the 2013 revision of the air quality policy for the European Union (EU). A group of experts convened by WHO Regional Office for Europe reviewed the accumulated primary research evidence together with some commissioned reviews and recommended concentration–response functions for air pollutant–health outcome pairs for which there was sufficient evidence for a causal association. The concentration–response functions link several indicators of mortality and morbidity with short- and long-term exposure to particulate matter, ozone and nitrogen dioxide. The project also provides guidance on the use of these functions and associated baseline health information in the cost–benefit analysis. The project results provide the scientific basis for formulating policy actions to improve air quality and thereby reduce the burden of disease associated with air pollution in Europe.

Journal ArticleDOI
TL;DR: By exploiting exogenous variations in air quality during the 2008 Beijing Olympic Games, Wang et al. as mentioned in this paper found that a 10 percent decrease in PM10 concentrations reduced the monthly standardized all-cause mortality rate by 8 percent.
Abstract: By exploiting exogenous variations in air quality during the 2008 Beijing Olympic Games, we estimate the effect of air pollution on mortality in China. We find that a 10 percent decrease in PM10 concentrations reduces the monthly standardized all-cause mortality rate by 8 percent. Men and women are equally susceptible to air pollution risks. The age groups for which the air pollution effects are greatest are children under 10 years old and the elderly.

Journal ArticleDOI
TL;DR: Long-term continuous measurements of NH3 at different locations in Shanghai, China, provide an unprecedented portrait of temporal and spatial characteristics of atmospheric NH3 in and around this megacity, highlighting the urgency and importance of monitoring gaseous ammonia and improving its emission inventory in andAround Shanghai.
Abstract: Atmospheric ammonia (NH3) has great environmental implications due to its important role in ecosystem and global nitrogen cycle, as well as contribution to secondary particle formation. Here, we report long-term continuous measurements of NH3 at different locations (i.e. urban, industrial and rural) in Shanghai, China, which provide an unprecedented portrait of temporal and spatial characteristics of atmospheric NH3 in and around this megacity. In addition to point emission sources, air masses originated from or that have passed over ammonia rich areas, e.g. rural and industrial sites, increase the observed NH3 concentrations inside the urban area of Shanghai. Remarkable high-frequency NH3 variations were measured at the industrial site, indicating instantaneous nearby industrial emission peaks. Additionally, we observed strong positive exponential correlations between NH4(+)/(NH4(+)+NH3) and sulfate-nitrate-ammonium (SNA) aerosols, PM2.5 mass concentrations, implying a considerable contribution of gas-to-particle conversion of ammonia to SNA aerosol formation. Lower temperature and higher humidity conditions were found to favor the conversion of gaseous ammonia to particle ammonium, particularly in autumn. Although NH3 is currently not included in China's emission control policies of air pollution precursors, our results highlight the urgency and importance of monitoring gaseous ammonia and improving its emission inventory in and around Shanghai.

Journal ArticleDOI
TL;DR: The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together sixteen modeling groups from Europe and North America, running eight operational online-coupled air quality models on common emissions and boundary conditions as mentioned in this paper.

Journal ArticleDOI
TL;DR: In this article, a large set of black carbon (BC) measurements was collected in Antwerp, Belgium, using a bicycle equipped with a portable BC monitor (micro-aethalometer).

Journal ArticleDOI
TL;DR: In this paper, the authors used the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting (WRF) simulations and internally consistent historical emission inventories obtained from EDGAR.
Abstract: . Trends in air quality across the Northern Hemisphere over a 21-year period (1990–2010) were simulated using the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting (WRF) simulations and internally consistent historical emission inventories obtained from EDGAR. Thorough comparison with several ground observation networks mostly over Europe and North America was conducted to evaluate the model performance as well as the ability of CMAQ to reproduce the observed trends in air quality over the past 2 decades in three regions: eastern China, the continental United States and Europe. The model successfully reproduced the observed decreasing trends in SO2, NO2, 8 h O3 maxima, SO42− and elemental carbon (EC) in the US and Europe. However, the model fails to reproduce the decreasing trends in NO3− in the US, potentially pointing to uncertainties of NH3 emissions. The model failed to capture the 6-year trends of SO2 and NO2 in CN-API (China – Air Pollution Index) from 2005 to 2010, but reproduced the observed pattern of O3 trends shown in three World Data Centre for Greenhouse Gases (WDCGG) sites over eastern Asia. Due to the coarse spatial resolution employed in these calculations, predicted SO2 and NO2 concentrations are underestimated relative to all urban networks, i.e., US-AQS (US – Air Quality System; normalized mean bias (NMB) = −38% and −48%), EU-AIRBASE (European Air quality data Base; NMB = −18 and −54%) and CN-API (NMB = −36 and −68%). Conversely, at the rural network EU-EMEP (European Monitoring and Evaluation Programme), SO2 is overestimated (NMB from 4 to 150%) while NO2 is simulated well (NMB within ±15%) in all seasons. Correlations between simulated and observed O3 wintertime daily 8 h maxima (DM8) are poor compared to other seasons for all networks. Better correlation between simulated and observed SO42− was found compared to that for SO2. Underestimation of summer SO42− in the US may be associated with the uncertainty in precipitation and associated wet scavenging representation in the model. The model exhibits worse performance for NO3− predictions, particularly in summer, due to high uncertainties in the gas/particle partitioning of NO3− as well as seasonal variations of NH3 emissions. There are high correlations (R > 0.5) between observed and simulated EC, although the model underestimates the EC concentration by 65% due to the coarse grid resolution as well as uncertainties in the PM speciation profile associated with EC emissions. The almost linear response seen in the trajectory of modeled O3 changes in eastern China over the past 2 decades suggests that control strategies that focus on combined control of NOx and volatile organic compound (VOC) emissions with a ratio of 0.46 may provide the most effective means for O3 reductions for the region devoid of nonlinear response potentially associated with NOx or VOC limitation resulting from alternate strategies. The response of O3 is more sensitive to changes in NOx emissions in the eastern US because the relative abundance of biogenic VOC emissions tends to reduce the effectiveness of VOC controls. Increasing NH3 levels offset the relative effectiveness of NOx controls in reducing the relative fraction of aerosol NO3− formed from declining NOx emissions in the eastern US, while the control effectiveness was assured by the simultaneous control of NH3 emission in Europe.

Journal ArticleDOI
TL;DR: In this paper, satellite measurements and simulations show that reductions in deforestation and associated fires in Brazil have reduced emissions of particulate matter, preventing between 400 and 1,700 deaths annually.
Abstract: Fires are used to clear tropical forests. Satellite measurements and simulations show that reductions in deforestation and associated fires in Brazil have reduced emissions of particulate matter, preventing between 400 and 1,700 deaths annually.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the relationship between urban spatial structure and air quality in the United States by using urban landscape metrics framework, empirically examine whether fragmentary and sprawling urban patterns are associated with low air quality.

Journal ArticleDOI
TL;DR: In this article, the authors employed Ordinary Least Squares (OLS), Spatial Lag Model (SAR), and Geographically Weighted Regression (GWR) to quantitatively estimate the comprehensive impact and spatial variations of China's urbanization process on air quality.
Abstract: Urban air pollution is one of the most visible environmental problems to have accompanied China’s rapid urbanization. Based on emission inventory data from 2014, gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial autorrelation of Air Quality Index (AQI) values at the city level, and employed Ordinary Least Squares (OLS), Spatial Lag Model (SAR), and Geographically Weighted Regression (GWR) to quantitatively estimate the comprehensive impact and spatial variations of China’s urbanization process on air quality. The results show that a significant spatial dependence and heterogeneity existed in AQI values. Regression models revealed urbanization has played an important negative role in determining air quality in Chinese cities. The population, urbanization rate, automobile density, and the proportion of secondary industry were all found to have had a significant influence over air quality. Per capita Gross Domestic Product (GDP) and the scale of urban land use, however, failed the significance test at 10% level. The GWR model performed better than global models and the results of GWR modeling show that the relationship between urbanization and air quality was not constant in space. Further, the local parameter estimates suggest significant spatial variation in the impacts of various urbanization factors on air quality.

Journal ArticleDOI
TL;DR: The results suggest that the general public, especially sensitive population groups such as children and the elderly, should take more stringent actions than those currently suggested based on the AQI approach during high air pollution events.

Journal ArticleDOI
TL;DR: It is suggested that significant environmental and health benefits are possible if alternative transport replaces even a relatively small portion of car trips, and this study aimed at quantifying co-benefit effects of alternative transport use in Adelaide, South Australia.

Journal ArticleDOI
TL;DR: In this paper, the main standards and guidelines related to key indoor air pollutants and levels of thermal comfort developed by different agencies around the world are summarized and compared to the standard values that are implemented currently.

Journal ArticleDOI
TL;DR: In this paper, the authors used the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) to estimate the co-benefits of energy savings on CO2 and air pollutants emission for implementing co-control options of energy efficiency measures and end-of-pipe options in the China’s cement industry for the period 2011-2030.

Journal ArticleDOI
TL;DR: In this paper, a review brings together a collective of methods that have demonstrated an ability to influence air flow patterns to reduce personal exposure in the built environment, including trees and vegetation, noise barriers, low boundary walls and parked cars.