scispace - formally typeset
Search or ask a question
Topic

Airfoil

About: Airfoil is a research topic. Over the lifetime, 24696 publications have been published within this topic receiving 337709 citations. The topic is also known as: aerofoil & wing section.


Papers
More filters
Proceedings ArticleDOI
TL;DR: In this paper, the authors quantified the heat transfer and aero performance differences of three cast airfoils with varying degrees of surface finish treatment and showed that tumbling and polishing reduced the average roughness and improved performance.
Abstract: Aerodynamic flow path losses and turbine airfoil gas side heat transfer are strongly affected by the gas side surface finish. For high aero efficiencies and reduced cooling requirements, airfoil designs dictate extensive surface finishing processes to produce smooth surfaces and enhance engine performance. The achievement of these requirements incurs additional manufacturing finishing costs over less strict requirements. The present work quantifies the heat transfer (and aero) performance differences of three cast airfoils with varying degrees of surface finish treatment. An airfoil, that was grit blast and Codep coated, produced an average roughness of 2.33 {micro}m, one that was grit blast, tumbled, and aluminide coated produced 1.03 {micro}m roughness, and another that received further postcoating polishing produced 0.81 {micro}m roughness. Local heat transfer coefficients were experimentally measured with a transient technique in a linear cascade with a wide range of flow Reynolds numbers covering typical engine conditions. The measured heat transfer coefficients were used with a rough surface Reynolds analogy to determine the local skin friction coefficients, from which the drag forces and aero efficiencies were calculated. Results show that tumbling and polishing reduce the average roughness and improve performance. The largest differences are observed from the tumbling process, with smallermore » improvements realized from polishing.« less

83 citations

Journal ArticleDOI
TL;DR: In this article, RANS simulations of the low-Reynolds-number flow past an SD7003 airfoil at Re = 6 × 10 4, where transition takes place across a laminar separation bubble is discussed.

83 citations

Journal ArticleDOI
TL;DR: In this paper, a tool for numerical shape optimization of axisymmetric bodies submerged in incompressible flow at zero incidence has been developed, where a source distribution on the body axis was chosen to model the body contour and the corresponding inviscid flowfield, with the source strengths being used as design variables for the optimization process.
Abstract: A tool for the numerical shape optimization of axisymmetric bodies submerged in incompressible flow at zero incidence has been developed. Contrary to the usual approach, the geometry of the body is not optimized in a direct way with this method. Instead, a source distribution on the body axis was chosen to model the body contour and the corresponding inviscid flowfield, with the source strengths being used as design variables for the optimization process. Boundary-layer calculation is performed by means of a proved integral method. To determine the transition location, a semiempirical method based on linear stability theory (e n method) was implemented. A commercially available hybrid optimizer as well as an evolution strategy with covariance matrix adaption of the mutation distribution are applied as optimization algorithms. Shape optimizations of airship hulls were performed for different Reynolds number regimes. The objective was to minimize the drag for a given volume of the envelope and a prescribed airspeed range

83 citations

Journal ArticleDOI
Yang Liu1, Hui Hu1
TL;DR: In this article, an experimental investigation was performed in an Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT) to quantify the unsteady heat transfer and dynamic ice accretion process over an airfoil/wing surface under different icing conditions.

83 citations

Journal ArticleDOI
Tim Lee1, S. Basu
TL;DR: In this article, the state of the unsteady boundary layer developed on the upper surface of a 6 in. chord NACA 0012 airfoil model, oscillated sinusoidally within and beyond the static-stall angle, was measured using 140 closely-spaced, multiple hot-film sensors.
Abstract: The spatial-temporal progressions of the leading-edge stagnation, separation and reattachment points, and the state of the unsteady boundary layer developed on the upper surface of a 6 in. chord NACA 0012 airfoil model, oscillated sinusoidally within and beyond the static-stall angle, were measured using 140 closely-spaced, multiple hot-film sensors (MHFS). The MHFS measurements show that (i) the laminar separation point and transition were delayed with increasing α and the reattachment and relaminarization were promoted with decreasing α, relative to the static case, (ii) the pitchup motion helped to keep the boundary layer attached to higher angles of attack over that could be obtained statically, (iii) the dynamic stall process was initiated by the turbulent flow separation in the leading-edge region as well as by the onset of flow reversal in the trailing-edge region, and (iv) the dynamic stall process was found not to originate with the bursting of a laminar separation bubble, but with a breakdown of the turbulent boundary layer. The MHFS measurements also show that the flow unsteadiness caused by airfoil motion as well as by the flow disturbances can be detected simultaneously and nonintrusively. The MHFS characterizations of the unsteady boundary layers are useful in the study of unsteady separated flowfields generated by rapidly maneuvering aircraft, helicopter rotor blades, and wing energy machines.

83 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
77% related
Laminar flow
56K papers, 1.2M citations
76% related
Rotor (electric)
179.9K papers, 1.2M citations
75% related
Vortex
72.3K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,083
20221,871
2021923
2020979
20191,097
20181,002