scispace - formally typeset
Search or ask a question
Topic

Airfoil

About: Airfoil is a research topic. Over the lifetime, 24696 publications have been published within this topic receiving 337709 citations. The topic is also known as: aerofoil & wing section.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a parametric study of fluid-structure interaction is employed to find pin locations along the chordwise direction that result in high lift generation for variable camber airfoil intended for a ducted fan aircraft.
Abstract: A piezoceramic composite actuator known as Macro-Fiber Composite (MFC) is used for actuation in the design of a variable camber airfoil intended for a ducted fan aircraft. The study focuses on response characterization under aerodynamic loads for circular arc airfoils with variable pinned boundary conditions. A parametric study of fluid–structure interaction is employed to find pin locations along the chordwise direction that result in high lift generation. Wind tunnel experiments are conducted on a 1.0% thick, 127 mm chord MFC actuated bimorph airfoil that is simply supported at 5% and 50% of the chord. Aerodynamic and structural performance results are presented for a flow rate of 15 m s − 1 and a Reynolds number of 127 000. Non-linear effects due to aerodynamic and piezoceramic hysteresis are identified and discussed. A lift coefficient change of 1.46 is observed, purely due to voltage actuation. A maximum 2D L/D ratio of 17.8 is recorded through voltage excitation.

72 citations

Journal ArticleDOI
TL;DR: In this paper, the flow fields around NACA0012 and NACA0002 airfoils at Reynolds number of 23,000 and the aerodynamic characteristics of these flowfields were analyzed using implicit large-eddy simulation and laminar-flow simulation.
Abstract: In this study, the flowfields around NACA0012 and NACA0002 airfoils at Reynolds number of 23,000 and the aerodynamic characteristics of these flowfields were analyzed using implicit large-eddy simulation and laminar-flow simulation Around this Reynolds number, the flow over an airfoil separates, transits, and reattaches, resulting in the generation of a laminar separation bubble at the angle of attack in a certain degree range Over an NACA0012 airfoil, the separation point moves toward its leading edge with an increasing angle of attack, and the separated flow may transit to create a short bubble On the other hand, over an NACA0002 airfoil, the separation point is kept at its leading edge, and the separated flow may transit to create a long bubble Moreover, nonlinearity appears in the lift curve of the NACA0012 airfoil, but not in that of NACA0002, despite the existence of a laminar separation bubble

72 citations

Journal ArticleDOI
01 May 2008
TL;DR: In this article, two-dimensional and three-dimensional contour bumps are designed and optimized for substantial wave drag reduction for an un-swept natural laminar flow (NLF) wing (RAE5243 aerofoil section) at transonic speeds.
Abstract: Two-dimensional and three-dimensional contour bumps are designed and optimized for substantial wave drag reduction for an un-swept natural laminar flow (NLF) wing (RAE5243 aerofoil section) at transonic speeds. An NLF aerofoil wing is chosen in this study, as shock con- trol is more crucial for such wings due to the requirement of favourable pressure gradients on a substantial part of the wing. For the validation purpose and to focus on the wave drag issues, the boundary layer is assumed to be fully turbulent from the leading edge. Key bump geometrical parameters including the maximum height, the length, and the crest position have been chosen for the parameterization of the two-dimensional and three-dimensional shock control bumps. For the three-dimensional bumps, an array of the contour bumps is installed spanwise on the transonic wing and their width and spanwise spacing are chosen as additional design param- eters. Both the two-dimensional and the three-dimensional bump shapes are optimized using a discrete adjoint-based optimization method. The performance of the three-dimensional con- tour bumps are compared in detail with the similarly optimized two-dimensional bumps both at and around the design point. The results show that, for the NLF wing studied, the optimized three-dimensional bumps are as effective as the optimized two-dimensional bump in terms of total drag reduction at the given design point, despite the significant difference in their geomet- rical shapes. More importantly, in terms of the operational range for varying lift conditions for practical applications, the three-dimensional bumps outperform the two-dimensional bump by a substantial margin.

72 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study was conducted to investigate the aerodynamic characteristics of bio-inspired corrugated airfoils compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number.
Abstract: An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.

72 citations

Patent
29 Jan 1996
TL;DR: In this article, a composite airfoil was proposed for a wide chord fan blade having a high degree of twist in a large high bypass ratio turbofan engine. But it was only suitable for a single-passenger aircraft.
Abstract: The present invention provides a composite airfoil, particularly useful as a wide chord fan blade having a high degree of twist in a large high bypass ratio turbofan engine. The composite airfoil of the present invention has a reinforced region of its airfoil that extends a portion of its span from its tip and a portion of its chord from its trailing edge. The region is covered by thin metallic sheathing bonded to trailing edge surfaces of the blade in a manner to reinforce that portion of the composite blade.

72 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
77% related
Laminar flow
56K papers, 1.2M citations
76% related
Rotor (electric)
179.9K papers, 1.2M citations
75% related
Vortex
72.3K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,083
20221,871
2021923
2020979
20191,097
20181,002