scispace - formally typeset
Search or ask a question
Topic

Airfoil

About: Airfoil is a research topic. Over the lifetime, 24696 publications have been published within this topic receiving 337709 citations. The topic is also known as: aerofoil & wing section.


Papers
More filters
Journal ArticleDOI
Kenneth C. Hall1
TL;DR: In this article, a general technique for constructing reduced order models of unsteady aerodynamic flows about two-dimensional isolated airfoils, cascades of airfoil, and three-dimensional wings is developed.
Abstract: A general technique for constructing reduced order models of unsteady aerodynamic flows about twodimensional isolated airfoils, cascades of airfoils, and three-dimensional wings is developed. The starting point is a time domain computational model of the unsteady small disturbance flow. For illustration purposes, we apply the technique to an unsteady incompressible vortex lattice model. The eigenmodes of the system, which may be thought of as aerodynamic states, are computed and subsequently used to construct computationally efficient, reduced order models of the unsteady flowfield. Only a handful of the most dominant eigenmodes are retained in the reduced order model. The effect of the remaining eigenmodes is included approximately using a static correction technique. An important advantage of the present method is that once the eigenmode information has been computed, reduced order models can be constructed for any number of arbitrary modes of airfoil motion very inexpensively. Numerical examples are presented that demonstrate the accuracy and computational efficiency of the present method. Finally, we show how the reduced order model may be incorporated into an aeroelastic flutter model.

206 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of variation of the amplitude of the pitching motion on the force coefe cient was investigated and it was shown that the critical parameter for thrust generation is not the reduced frequency but the Strouhal number based on the maximum excursion of the trailing edge.
Abstract: Ae niteelemente owsolverbasedonunstructuredgridsisemployedforstudyingtheunsteadye owpastoscillating airfoils. The viscous e ow past a NACA0012 airfoil at various pitching frequencies is simulated. The variation of the force coefe cient with reduced frequency is compared to experimental and other numerical studies. The effect of variation of the amplitude of the pitching motion on the force coefe cient shows that the critical parameter for thrust generation is not the reduced frequency but the Strouhal number based on the maximum excursion of the trailing edge. The e ow about theairfoil in a combined pitching and heaving motion, a modefound in many insects, is also simulated. The effects of varying the phase angle between the pitch and the heave motions is studied. The thrust coefe cient was compared with experimental studies and good agreement is obtained. It is found that the maximumthrustcoefe cient isobtained forwhen thepitchmotionleads theheavemotion by 120 deg andmaximum propulsive efe ciency occurs at a phase angle of 90 deg.

206 citations

01 Jun 1947
TL;DR: In this paper, the forces and moments on a two-dimensional airfoil executing harmonic motions in a pulsating stream are derived on the basis of non-stationary incompressible potential flow theory, with the inclusion of the effect of the continuous sheet of vortices shed from the trailing edge.
Abstract: The forces and moments on a two-dimensional airfoil executing harmonic motions in a pulsating stream are derived on the basis of non-stationary incompressible potential flow theory, with the inclusion of the effect of the continuous sheet of vortices shed from the trailing edge. An assumption as to the form of the wake is made with a certain degree of approximation. A comparison with previous work applicable only to the special case of a stationary airfoil is made by means of a numerical example, and the excellent agreement obtained shows that the wake approximation is quite sufficient. The results obtained are expected to be useful in considerations of forced vibrations and flutter of rotary wing aircraft.

204 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of leading edge erosion on the aerodynamic performance of a wind turbine airfoil was investigated and the results showed that leading edge degradation can produce substantial airfoIL performance degradation, yielding a large increase in drag coupled with a significant loss in lift near the upper corner of the drag polar.
Abstract: This paper presents results of a study to investigate the effect of leading edge erosion on the aerodynamic performance of a wind turbine airfoil. The tests were conducted on the DU 96-W-180 wind turbine airfoil at three Reynolds numbers between 1 million and 1.85 million, and angles of attack spanning the nominal low drag range of the airfoil. The airfoil was tested with simulated leading edge erosion by varying both the type and severity of the erosion to investigate the loss in performance due to an eroded leading edge. Tests were also run with simulated bugs on the airfoil to assess the impact of insect accretion on airfoil performance. The objective was to develop a baseline understanding of the aerodynamic effects of varying levels of leading edge erosion and to quantify their relative impact on airfoil performance. Results show that leading edge erosion can produce substantial airfoil performance degradation, yielding a large increase in drag coupled with a significant loss in lift near the upper corner of the drag polar, which is key to maximizing wind turbine energy production. Copyright © 2013 John Wiley & Sons, Ltd.

203 citations

Journal ArticleDOI
TL;DR: In this article, the dynamics and interaction of vortical structures were analyzed within a single dynamic stall life cycle leading to a classification of the unsteady flow development into five successive stages: the attached flow stage, the stall development stage, stall onset, stalled stage, and flow reattachment.
Abstract: Dynamic stall on a helicopter rotor blade comprises a series of complex aerodynamic phenomena in response to the unsteady change of the blade’s angle of attack. It is accompanied by a lift overshoot and delayed massive flow separation with respect to static stall. The classical hallmark of the dynamic stall phenomenon is the dynamic stall vortex. The flow over an oscillating OA209 airfoil under dynamic stall conditions was investigated by means of unsteady surface pressure measurements and time-resolved particle image velocimetry. The characteristic features of the unsteady flow field were identified and analysed utilising different coherent structure identification methods. An Eulerian and a Lagrangian procedure were adopted to locate the axes of vortices and the edges of Lagrangian coherent structures, respectively; a proper orthogonal decomposition of the velocity field revealed the energetically dominant coherent flow patterns and their temporal evolution. Based on the complementary information obtained by these methods the dynamics and interaction of vortical structures were analysed within a single dynamic stall life cycle leading to a classification of the unsteady flow development into five successive stages: the attached flow stage; the stall development stage; stall onset; the stalled stage; and flow reattachment. The onset of dynamic stall was specified here based on a characteristic mode of the proper orthogonal decomposition of the velocity field. Variations in the flow field topology that accompany the stall onset were verified by the Lagrangian coherent structure analysis. The instantaneous effective unsteadiness was defined as a single representative parameter to describe the influence of the motion parameters. Dynamic stall onset was found to be promoted by increasing unsteadiness. The mechanism that results in the detachment of the dynamic stall vortex from the airfoil was identified as vortex-induced separation caused by strong viscous interactions. Finally, a revised criterion to discern between light and deep dynamic stall was formulated.

203 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
77% related
Laminar flow
56K papers, 1.2M citations
76% related
Rotor (electric)
179.9K papers, 1.2M citations
75% related
Vortex
72.3K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,083
20221,871
2021923
2020979
20191,097
20181,002