scispace - formally typeset
Search or ask a question
Topic

Airfoil

About: Airfoil is a research topic. Over the lifetime, 24696 publications have been published within this topic receiving 337709 citations. The topic is also known as: aerofoil & wing section.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, two algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis of oscillating airfoils for use on an unstructured grid made up of triangles.
Abstract: Two algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis of oscillating airfoils. Both algorithms were developed for use on an unstructured grid made up of triangles. The first flow solver involves a Runge-Kutta time-stepping scheme with a finite-volume spatial discretization that reduces to central differencing on a rectangular mesh. The second flow solver involves a modified Euler time-integration scheme with an upwind-biased spatial discretization based on the flux-vector splitting of Van Leer. The paper presents descriptions of the Euler solvers and dynamic mesh algorithm along with results which assess the capability.

783 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare the flutter phenomena of the suspension bridge and the airfoil and employ a free-oscillation experimental method to measure model bridge flutter coefficients analogous to air-foil flutter coefficient.
Abstract: The writers compare the flutter phenomena of the suspension bridge and the airfoil and employ a free-oscillation experimental method to measure model bridge flutter coefficients analogous to airfoil flutter coefficients. They employ the airfoil as a check on the experimental method, both as a theoretical backdrop and to test out the nature of aerodynamic oscillatory forces under exponentially modified motion. A short catalogue of bridge deck flutter coefficients is then experimentally obtained and presented covering a range of bridge deck forms. Detailed results are described to account for a number of phenomena observed in the wind tunnel and in the field.

746 citations

Journal ArticleDOI
TL;DR: In this paper, the lift and moment acting upon an airfoil in the two-dimensional case may be calculated directly from simple physical considerations of momentum and moment of momentum after a calculation of the induction effects of a wake vortex.
Abstract: The basic conceptions of the circulation theory of airfoils are reviewed briefly, and the mechanism by which a “wake” of vorticity is produced by an airfoil in non-uniform motion is pointed out It is shown how the lift and moment acting upon an airfoil in the two-dimensional case may be calculated directly from simple physical considerations of momentum and moment of momentum After a calculation of the induction effects of a wake vortex, formulae for the lift and moment are obtained which are applicable to all cases of motion of a two-dimensional thin airfoil in which the wake produced is approximately flat; ie, in which the movement of the airfoil normal to its mean path is small The general results are applied first to the case of an oscillating airfoil and then to the problem of a plane airfoil entering a “sharp-edged” gust In the latter case the rate of increase of the lift after the entrance of the airfoil into the gust boundary is determined, and it is shown that during the entire process the lift acts at the quarter-chord point of the airfoil The intention of the authors has been to make the airfoil theory of non-uniform motion more accessible to engineers by showing the physical significance of the various steps of the mathematical deductions, and to present the results of the theory in a form suitable for immediate application to certain flutter and gust problems

720 citations

Journal ArticleDOI
TL;DR: In this paper, the scaling laws of biological and micro-air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power are summarized and discussed.

704 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
77% related
Laminar flow
56K papers, 1.2M citations
76% related
Rotor (electric)
179.9K papers, 1.2M citations
75% related
Vortex
72.3K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,083
20221,871
2021923
2020979
20191,097
20181,002