scispace - formally typeset
Search or ask a question
Topic

Airfoil

About: Airfoil is a research topic. Over the lifetime, 24696 publications have been published within this topic receiving 337709 citations. The topic is also known as: aerofoil & wing section.


Papers
More filters
Book ChapterDOI
01 Jan 1999
TL;DR: In this article, the authors used explicit mathematical functions for 2D curve definition for airfoil design and 3D wing definition for high lift systems by modelled track gear geometries, translation and rotation in 3D space.
Abstract: Explicit mathematical functions are used for 2D curve definition for airfoil design. Flowphe-nomena-oriented parameters control geometrical and aerodynamic properties. Airfoil shapes are blended with known analytical section formulae. Generic variable camber wing sections and multicomponent airfoils are generated. For 3D wing definition all parameters are made functions of a third spanwise coordinate. High lift systems are defined kinematically by modelled track gear geometries, translation and rotation in 3D space. Examples for parameter variation in numerical optimization, mechanical adaptation and for unsteady coupling of flow and configuration are presented.

392 citations

ReportDOI
01 Jan 1997
TL;DR: In this article, a 21-percent-thick laminar flow airfoil, the S809, for horizontal-axis wind-turbine applications, has been designed and analyzed theoretically and verified experimentally in the lowturbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands.
Abstract: A 21-percent-thick, laminar-flow airfoil, the S809, for horizontal-axis wind-turbine applications, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.

389 citations

Journal ArticleDOI
TL;DR: In this paper, a leading-edge backscattering correction is derived, based on the solution of an equivalent Schwarzschild problem, and added to the original formula to account for all the effects due to a limited chord length, and to infer the far-field radiation off the mid-span plane.

385 citations

Journal ArticleDOI
09 Sep 2012-Energies
TL;DR: A detailed review of the current state-of-the-art for wind turbine blade design is presented in this paper, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads.
Abstract: A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection and optimal attack angles. A detailed review of design loads on wind turbine blades is offered, describing aerodynamic, gravitational, centrifugal, gyroscopic and operational conditions.

379 citations

Journal ArticleDOI
TL;DR: In this article, detailed measurements of the subsonic flow in a large-scale, plane turbine cascade were made to evaluate the three-dimensional nature of the flow field with a passage aspect ratio of 1.0 with a collateral inlet boundary layer.
Abstract: Detailed measurements of the subsonic flow in a large-scale, plane turbine cascade were made to evaluate the three-dimensional nature of the flow field. Tests were conducted at a passage aspect ratio of 1.0 with a collateral inlet boundary layer. Flow visualization was done on airfoil and endwall surfaces. Velocity and pressure measurements were taken before and behind the cascade and in six axial planes within a cascade passage, using a five-hole probe. Hot wire measurements were taken in the endwall boundary layer within the cascade passage. The characteristics of the endwall boundary layer are presented, showing that three-dimensional separation is an important feature of end-wall flow. A large part of the endwall boundary layer was found to be very thin when compared to the cascade inlet boundary layer. Data showing the growth of aerodynamic loss through the passage are discussed.

378 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
77% related
Laminar flow
56K papers, 1.2M citations
76% related
Rotor (electric)
179.9K papers, 1.2M citations
75% related
Vortex
72.3K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,083
20221,871
2021923
2020979
20191,097
20181,002