scispace - formally typeset
Search or ask a question
Topic

Alcohol fuel

About: Alcohol fuel is a research topic. Over the lifetime, 2030 publications have been published within this topic receiving 42757 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a green and sustainable route for chemical to electrical energy conversion using direct alcohol fuel cells, and design highly efficient electrocatalysts for the electro-oxidat...
Abstract: Direct alcohol fuel cells represent a promising green and sustainable route for chemical to electrical energy conversion; however, designing highly efficient electrocatalysts for the electro-oxidat...

17 citations

Book
01 Jan 1991
TL;DR: In this article, the authors present information of interest to automotive design engineers, technologists in the petroleum industry, students, legislators, and others interested in petroleum technology, including the technology associated with the fuel system from tank to metering.
Abstract: This book is in two volumes: Volume 1: Gasoline - contains information of interest to automotive design engineers, technologists in the petroleum industry, students, legislators, and others interested in petroleum technology. This volume covers the technology associated with the fuel system from tank to metering. Volume 2: Diesel - traces the processing, handling, and combustion of diesel fuel from crude oil to exhaust emissions. The volume also explores such current issues as using natural gas as an alternative to diesel fuel, increasing air charge in cylinders, and more.

17 citations

Journal ArticleDOI
17 Oct 2015
TL;DR: In this article, the effects of ethanol on gasoline engine performance and exhaust emissions were investigated and the results showed that the brake specific fuel consumption for the blended fuel is better than gasoline fuel.
Abstract: Automotive sector is one of the major contributors to air pollution and global warming due to the carbon residue and smoke opacity emission. Today, the trend of decreasing sources of petroleum fuel has led to innovation of other resources such as alternative fuel. Alternative fuel can be produced from biomass such as alcohol in which it is produced by fermentation of sugar, cane and corn. This experiment was conducted to investigate the effects of ethanol on gasoline engine performance and exhaust emissions. A four-stroke, single cylinder engine was tested by different range of ethanol volume percentages i.e. 10% (E10), 20% (E20) and 30% (E30) blended with fossil gasoline. The experiment was carried out at variations of engine speed and constant load. The engine speeds used for a constant load at 2 Nm were 2000rpm, 2500rpm and 3000rpm. From the results obtained, it shows that the brake specific fuel consumption for the blended fuel is better than gasoline fuel. Combustion efficiency of gasoline engine has improved with the use of ethanol-gasoline blends. Exhaust emissions such as CO and smoke opacity are decreased due to the presence of oxygenated properties of ethanol in blended fuel. However, emissions of CO 2 are increased due to the high combustion temperature. In overall, the E20 shows the best results for all measured parameters at all engine test conditions.

17 citations

Journal Article
TL;DR: In this paper, an additive package is designed on the basis of the blended fuel properties to overcome phase separation and low cetane number, which are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines.
Abstract: Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding 1~2% (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. NO x emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.

17 citations

Book ChapterDOI
12 May 2017
TL;DR: In this article, the reaction mechanisms of the most important electrochemical reactions involved in low-temperature fuel cells, that is, the electrooxidation of hydrogen, carbon monoxide, methanol, and ethanol and the electroreduction of oxygen, have been established.
Abstract: For a clean environment, low-temperature fuel cells are particularly important to power familiar devices, such as portable electronics (cell phones, computers, cam recorders, etc.) or electrical vehicles (buses, trucks, and individual cars). Among them, the alkaline fuel cell working at 80 °C with pure hydrogen, the proton exchange membrane fuel cell that can operate at temperatures ranging from ambient to 70–80 °C with hydrogen either produced by water electrolysis or by hydrocarbon reforming, and the direct alcohol fuel cell that realizes at higher temperatures (up to 120–150 °C) the direct electrooxidation of methanol or ethanol are particularly convenient. In these fuel cells, because of the relatively low working temperatures, the kinetics of the electrochemical reactions involved (fuel oxidation and oxygen reduction) is rather slow. Therefore, to improve the reaction kinetics, by a careful design of the electrode catalyst, it is necessary to determine detailed reactionmechanisms, where all the adsorbed species and intermediate products have been clearly identified. The use of purely electrochemical techniques is not at all sufficient to do it, and electrochemical methods have to be coupled with spectroscopic methods (infrared spectroscopy, mass spectroscopy, etc.) and analytical methods (gas chromatography, high-pressure liquid chromatography, radiotracers, etc.) in order to identify the different species involved and to evaluate their concentration or surface amount. After the establishment of the reaction mechanism, particularly the knowledge of the rate determining step, it is important to design suitable electrocatalysts able to activate preferentially the rate determining step.The various methods to prepare such catalysts are first presented. Then, the different physicochemical methods used to evaluate their properties and to determine the reaction mechanisms are discussed. Finally, the reaction mechanisms of the most important electrochemical reactions involved in low-temperature fuel cells, that is, the electrooxidation of hydrogen, carbon monoxide, methanol, and ethanol and the electroreduction of oxygen, have been established.

17 citations


Network Information
Related Topics (5)
Internal combustion engine
130.5K papers, 1M citations
78% related
Combustion
172.3K papers, 1.9M citations
77% related
Renewable energy
87.6K papers, 1.6M citations
70% related
Methane
47.7K papers, 1.1M citations
68% related
Biomass
57.2K papers, 1.4M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202255
202143
202046
201962
201850