scispace - formally typeset
Search or ask a question
Topic

Alcohol fuel

About: Alcohol fuel is a research topic. Over the lifetime, 2030 publications have been published within this topic receiving 42757 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, Ruthenium-doped lanthanum chromite and aluminite were explored as catalysts for the autothermal reforming of diesel fuel, and Dodecane was used as a surrogate fuel.
Abstract: Developing low-cost diesel-reforming catalysts and improving fuel mixing prior to catalytic reforming were addressed as two critical issues under the current study. Ruthenium-doped lanthanum chromite and aluminite were explored as catalysts for the autothermal reforming of diesel fuel. Dodecane was used as a surrogate fuel. Both catalysts yielded nearly 20 moles of hydrogen per mole of dodecane at oxygen-to-carbon ratios of 0.5 and steam-to-carbon ratios of 2 at space velocities near 100,000/h−1. Both catalysts were shown to have good S tolerance when tested with a fuel mixture containing 50 parts per million S in the form of dibenzothiophene. Parallel to catalyst development, the impact of fuel mixing and vaporization through improved liquid injection also is under investigation.

9 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a body of information regarding the emissions from a variety of diesel engines or vehicles, including the use of a poorer quality fuel frequently made emissions worse, while using a higher aromatic blend was seen to increase the Ames test response.
Abstract: The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines. Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions. EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel. Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a single-cylinder diesel engine was modified to work in dual fuel mode and the feasibility of using methyl ester of mahua oil as pilot fuel was studied.
Abstract: For the present work, a single cylinder diesel engine was modified to work in dual fuel mode. To study the feasibility of using methyl ester of mahua oil as pilot fuel, it was used as pilot fuel and liquefied petroleum gas was used as primary fuel. In dual fuel mode, pilot fuel quantity and injector opening pressure are the few variables, which affect the performance and emission of dual fuel engine. Hence, in the present work, pilot fuel quantity and injector opening pressure were varied. From the test results, it was observed that the pilot fuel quantity of 5 mg per cycle and injector opening pressure of 200 bar results in higher brake thermal efficiency. Also the exhaust emissions such as smoke, unburnt hydrocarbon and carbon monoxide are lower than other pressures and pilot fuel quantities. The higher injection pressure and proper pilot fuel quantity might have resulted in better atomization, penetration of methyl ester of mahua oil and better combustion of fuel.

9 citations

Proceedings ArticleDOI
01 Oct 1990
TL;DR: In this paper, the results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C(sub 1]-C(sub 4) alcohol were reported.
Abstract: Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necessitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C(sub 1)--C(sub 4) alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel.

9 citations

Book ChapterDOI
01 Jan 2010
TL;DR: In this article, the Proton Exchange Membrane Fuel Cell (PEMFC) system is used to replace the hydrogen with the alcohol in the PEMFC, where the dissociative adsorption of alcohol leads to the formation of adsorbed CO species.
Abstract: There is now a great interest in developing different kinds of fuel cells for several applications (stationary electric power plants, transportation, portable electronic devices) For many applications, hydrogen is the most convenient fuel, but it is not a primary fuel, so that it has to be produced from different sources: water, fossil fuels (natural gas, hydrocarbons, etc), biomass resources, etc When produced from fossil fuel and biomass resources, hydrogen gas contains a non negligible amount of CO, which acts as a poisoning species for platinum electrocatalysts Other fuels, particularly alcohols, which are liquid under ambient temperature and pressure, are more convenient due to the easiness of their handling and distribution and high theoretical energy density (6 to 8 kWh kg−1, for methanol and ethanol, respectively) Direct Methanol Fuel Cells (DMFCs) and Direct Ethanol Fuel Cells (DEFCs) are based on the Proton Exchange Membrane Fuel Cell (PEMFC) system, in which hydrogen is replaced by the alcohol Moreover, due to the presence of carbon monoxide, the issues for PEMFCs working with reformate gas are close to those met in Direct Alcohol Fuel Cells (DAFCs), where the dissociative adsorption of alcohol leads to the formation of adsorbed CO species

9 citations


Network Information
Related Topics (5)
Internal combustion engine
130.5K papers, 1M citations
78% related
Combustion
172.3K papers, 1.9M citations
77% related
Renewable energy
87.6K papers, 1.6M citations
70% related
Methane
47.7K papers, 1.1M citations
68% related
Biomass
57.2K papers, 1.4M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202255
202143
202046
201962
201850