scispace - formally typeset
Search or ask a question

Showing papers on "Aldehyde dehydrogenase published in 2013"


Journal ArticleDOI
TL;DR: The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems and is associated with a variety of pathological conditions in humans.

450 citations


Journal ArticleDOI
TL;DR: It is proposed that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopamine neurons, and development of PD.
Abstract: Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis.

173 citations


Journal ArticleDOI
TL;DR: Six oxygen tolerant CoA-acylating aldehyde dehydrogenases (PduP) from the 1,2-propandiol degradation pathway are characterized and it is shown that PduP catalyzes the reversible reduction of a broad range of acyl-CoAs into corresponding aldehydes.
Abstract: Metabolic engineering of photosynthetic microorganisms such as cyanobacteria for the production of fuels or chemicals is challenging, particularly when the pathway involves oxygen-sensitive enzymes. We have previously designed a coenzyme A (CoA) dependent n-butanol biosynthesis pathway tailored to the metabolic physiology of the cyanobacterium Synechococcus elongatus PCC 7942 by incorporating an ATP driving force and a kinetically irreversible trap. However, one of the enzymes involved, CoA-acylating butyraldehyde dehydrogenase (Bldh) is oxygen sensitive, therefore hindering efficient n-butanol synthesis in cyanobacteria. To overcome this obstacle of n-butanol biosynthesis, we characterized six oxygen tolerant CoA-acylating aldehyde dehydrogenases (PduP) from the 1,2-propandiol degradation pathway for their activity toward acyl-CoA. We showed that PduP catalyzes the reversible reduction of a broad range of acyl-CoAs (C2 to C12) into corresponding aldehydes. In particular, PduP from Salmonella enterica has the highest catalytic efficiency (kcat/Km) of 292 s−1 mM−1 for butyryl-CoA, which is about 7 times higher than that for acetyl-CoA. Finally, replacing Bldh with PduP in the n-butanol synthesis pathway resulted in n-butanol production to a cumulative titer of 404 mg L−1 with peak productivity of 51 mg per L per day, exceeding the base strain by 20 fold. Thus, the oxygen sensitivity of CoA-acylating aldehyde dehydrogenase appears to be a key limiting factor for cyanobacteria to produce alcohols through the CoA-dependent route.

154 citations


Journal ArticleDOI
01 Jan 2013-Planta
TL;DR: The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD-o r NADP-dependent conversion of various aldehydes to their corresponding carboxylic acids.
Abstract: In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD ? -o r NADP ? -dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as bio- genic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly con- served between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sa- tiva (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary com- parison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.

133 citations


Journal ArticleDOI
TL;DR: This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes.

124 citations


Journal ArticleDOI
TL;DR: It is demonstrated that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs, and ALDHhigh cells have enhanced self-renewal and differentiation potentials and are more resistant to cisplatin treatment than ALDHlow cells.
Abstract: // Shu-Yan Liu 1 and Peng-Sheng Zheng 1,2 1 Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi’an Jiaotong University, Xi’an, The People’s Republic of China 2S ection of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People’s Republic of China, Xi’an, The People’s Republic of China Correspondence: Peng-Sheng Zheng, email: // Keywords : aldehyde dehydrogenase, cancer stem cells, cervical cancer, self-renewal, chemoresistance Received : November 5, 2013 Accepted : November 23, 2013 Published : November 25, 2013 Abstract High aldehyde dehydrogenase (ALDH) activity characterizes a subpopulation of cells with cancer stem cell (CSC) properties in several malignancies. To clarify whether ALDH can be used as a marker of cervical cancer stem cells (CCSCs), ALDH high and ALDH low cells were sorted from 4 cervical cancer cell lines and 5 primary tumor xenografts and examined for CSC characteristics. Here, we demonstrate that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs: (1) ALDH high cells, unlike ALDH low cells, are highly tumorigenic in vivo ; (2) ALDH high cells can give rise to both ALDH high and ALDH low cells in vitro and i n vivo , thereby establishing a cellular hierarchy; and (3) ALDH high cells have enhanced self-renewal and differentiation potentials. Additionally, ALDH high cervical cancer cells are more resistant to cisplatin treatment than ALDH low cells. Finally, expression of the stem cell self-renewal-associated transcription factors OCT4, NANOG, KLF4 and BMI1 is elevated in ALDH high cervical cancer cells. Taken together, our data indicated that high ALDH activity may represent both a functional marker for CCSCs and a target for novel cervical cancer therapies.

104 citations


Journal ArticleDOI
TL;DR: It can be concluded that ALDH generates chemoresistance in gastric cancer cells through Notch1 and Shh signaling, suggesting novel treatment targets.
Abstract: Cancer stem cells (CSCs) are known to influence chemoresistance, survival, relapse and metastasis. Aldehyde dehydrogenase (ALDH) functions as an epithelial CSC marker. In the present study, we investigated the involvement of ALDH in gastric CSC maintenance, chemoresistance and survival. Following screening for eight candidate markers (CD13, CD26, CD44, CD90, CD117, CD133, EpCAM and ALDH), five gastric cancer cell lines were found to contain small subpopulations of high ALDH activity (ALDH(high) cells). We also examined the involvement of ALDH(high) cell populations in human primary tumor samples. Immunodeficient NOD/SCID mice were inoculated with tumor tissues obtained from surgical specimens. ALDH(high) cells were found to persist in the xenotransplanted primary tumor samples. in the immunodeficient mice, ALDH(high) cells exhibited a greater sphere‑forming ability in vitro and tumorigenic potential in vivo, compared with subpopulations of low ALDH activity (ALDH(low) cells). Cell cultures treated with 5-fluoro-uracil and cisplatin exhibited higher numbers of ALDH(high) cells. Notch1 and Sonic hedgehog (Shh) expression was also found to increase in ALDH(high) cells compared with ALDH(low) cells. Therefore, it can be concluded that ALDH generates chemoresistance in gastric cancer cells through Notch1 and Shh signaling, suggesting novel treatment targets.

96 citations


Journal ArticleDOI
TL;DR: It is demonstrated that NBP was well absorbed and extensively metabolized by multiple enzymes to various metabolites prior to urinary excretion, and can undergo β-oxidation to yield phthalide-3-acetic acid in rat liver homogenate.
Abstract: 3-n-Butylphthalide (NBP) is a cardiovascular drug currently used for the treatment of cerebral ischemia. The present study aims to investigate the metabolism, pharmacokinetics, and excretion of NBP in humans and identify the enzymes responsible for the formation of major metabolites. NBP underwent extensive metabolism after an oral administration of 200 mg NBP and 23 metabolites were identified in human plasma and urine. Principal metabolic pathways included hydroxylation on alkyl side chain, particularly at 3-, ω-1-, and ω-carbons, and further oxidation and conjugation. Approximately 81.6% of the dose was recovered in urine, mainly as NBP-11-oic acid (M5-2) and glucuronide conjugates of M5-2 and mono-hydroxylated products. 10-Keto-NBP (M2), 3-hydroxy-NBP (M3-1), 10-hydroxy-NBP (M3-2), and M5-2 were the major circulating metabolites, wherein the areas under the curve values were 1.6-, 2.9-, 10.3-, and 4.1-fold higher than that of NBP. Reference standards of these four metabolites were obtained through microbial biotransformation by Cunninghamella blakesleana. In vitro phenotyping studies demonstrated that multiple cytochrome P450 (P450) isoforms, especially CYP3A4, 2E1, and 1A2, were involved in the formation of M3-1, M3-2, and 11-hydroxy-NBP. Using M3-2 and 11-hydroxy-NBP as substrates, human subcellular fractions experiments revealed that P450, alcohol dehydrogenase, and aldehyde dehydrogenase catalyzed the generation of M2 and M5-2. Formation of M5-2 was much faster than that of M2, and M5-2 can undergo β-oxidation to yield phthalide-3-acetic acid in rat liver homogenate. Overall, our study demonstrated that NBP was well absorbed and extensively metabolized by multiple enzymes to various metabolites prior to urinary excretion.

93 citations


Journal ArticleDOI
TL;DR: The lexicon of vitamin K ω-hydroxylases is expanded to include the 'orphan' P450 CYP4F11 and a common variant, CYP 4F2, is identified as a major pharmacogenetic variable influencing MK4 catabolism.
Abstract: Vitamin K plays an essential role in many biological processes including blood clotting, maintenance of bone health, and inhibition of arterial calcification A menaquinone form of vitamin K, MK4, is increasingly recognized for its key roles in mitochondrial electron transport, as a ligand for the nuclear receptor SXR, which controls the expression of genes involved in transport and metabolism of endo- and xenobiotics, and as a pharmacotherapeutic in the treatment of osteoporosis Although cytochrome P450 (CYP) 4F2 activity is recognized as an important determinant of phylloquinone (K1) metabolism, the enzymes involved in menaquinone catabolism have not been studied previously CYP4F2 and CYP4F11 were expressed and purified and found to be equally efficient as in vitro catalysts of MK4 ω- hydroxylation CYP4F2, but not CYP4F11, catalyzed sequential metabolism of MK4 to the ω- acid without apparent release of the intermediate aldehyde The ω-alcohol could also be metabolized to the acid by microsomal NAD + -dependent alcohol and aldehyde dehydrogenases LC−MS/MS analysis of trypsinized human liver microsomes (using a surrogate peptide approach) revealed the mean concentrations of CYP4F2 and CYP4F11 to be 143 and 84 pmol/mg protein, respectively Microsomal MK4 ω-hydroxylation activities correlated with the CYP4F2 V433M genotype but not the CYP4F11 D446N genotype Collectively, these data expand the lexicon of vitamin K ω-hydroxylases to include the 'orphan' P450 CYP4F11 and identify a common variant, CYP4F2 (rs2108622), as a major pharmacogenetic variable influencing MK4 catabolism

75 citations


Journal ArticleDOI
11 Mar 2013-PLOS ONE
TL;DR: A cyanobacteria class-3 aldehyde-dehydrogenase, AldE, was discovered that was necessary and sufficient to instead oxidize fatty aldehydes precursors into fatty acids, which may allow biofuel production without transgenesis.
Abstract: We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.

74 citations


Journal ArticleDOI
Maroof Alam1, Rehan Ahmad1, Hasan Rajabi1, Akriti Kharbanda1, Donald Kufe1 
TL;DR: It is demonstrated that MUC1-C activates a previously unrecognized ERK→C/EBPβ→ALDH1A1 pathway, and promotes the induction of ALDH activity in breast cancer cells, and is detectable in stem-like cells when expanded as mammospheres.

Journal ArticleDOI
TL;DR: It is found that ALDH-positive 4T1 cells showed stem cell-like properties in vitro and in vivo, and may provide the evidence necessary for exploring a new strategy in the treatment of breast cancer.

Journal ArticleDOI
23 Dec 2013-PLOS ONE
TL;DR: An important role is demonstrated for STAT3 signaling in ALDH+ and ALDH/CD44+/CD24− subpopulations of breast cancer cells which may have cancer stem cell properties and pharmacologic inhibition of STAT3 represents an effective strategy to selectively target the cancer stem-like subpopulation.
Abstract: Background STAT3 activation is frequently detected in breast cancer and this pathway has emerged as an attractive molecular target for cancer treatment. Recent experimental evidence suggests ALDH-positive (ALDH(+)), or cell surface molecule CD44-positive (CD44(+)) but CD24-negative (CD24(-)) breast cancer cells have cancer stem cell properties. However, the role of STAT3 signaling in ALDH(+) and ALDH(+)/CD44(+)/CD24(-) subpopulations of breast cancer cells is unknown. Methods and results We examined STAT3 activation in ALDH(+) and ALDH(+)/CD44(+)/CD24(-) subpopulations of breast cancer cells by sorting with flow cytometer. We observed ALDH-positive (ALDH(+)) cells expressed higher levels of phosphorylated STAT3 compared to ALDH-negative (ALDH(-)) cells. There was a significant correlation between the nuclear staining of phosphorylated STAT3 and the expression of ALDH1 in breast cancer tissues. These results suggest that STAT3 is activated in ALDH(+) subpopulations of breast cancer cells. STAT3 inhibitors Stattic and LLL12 inhibited STAT3 phosphorylation, reduced the ALDH(+) subpopulation, inhibited breast cancer stem-like cell viability, and retarded tumorisphere-forming capacity in vitro. Similar inhibition of STAT3 phosphorylation, and breast cancer stem cell viability were observed using STAT3 ShRNA. In addition, LLL12 inhibited STAT3 downstream target gene expression and induced apoptosis in ALDH(+) subpopulations of breast cancer cells. Furthermore, LLL12 inhibited STAT3 phosphorylation and tumor cell proliferation, induced apoptosis, and suppressed tumor growth in xenograft and mammary fat pad mouse models from ALDH(+) breast cancer cells. Similar in vitro and tumor growth in vivo results were obtained when ALDH(+) cells were further selected for the stem cell markers CD44(+) and CD24(-). Conclusion These studies demonstrate an important role for STAT3 signaling in ALDH(+) and ALDH(+)/CD44(+)/CD24(-) subpopulations of breast cancer cells which may have cancer stem cell properties and suggest that pharmacologic inhibition of STAT3 represents an effective strategy to selectively target the cancer stem cell-like subpopulation.

Journal ArticleDOI
TL;DR: As a result of their catalytic and non-catalytic functions, ALDH3A1 and ALDH1A1 proteins protect inner ocular tissues from ultraviolet radiation and reactive oxygen-induced damage and contribute to cellular transparency in corneal stromal keratocytes, supporting a structural role of these ALDH proteins.

Journal ArticleDOI
TL;DR: In this article, aldehyde dehydrogenase (ALDH) upregulates ALDH by dietary means, thereby reducing acetaldehyde toxicity in East Asians, who are highly intolerant to even modest alcohol consumption.
Abstract: Aims: Many East Asians are highly intolerant to even modest alcohol consumption. These individuals accumulate acetaldehyde, the primary metabolite of ethanol, because of a genetic polymorphism of aldehyde dehydrogenase (ALDH) that metabolizes acetaldehyde to nontoxic acetate. The aim of these studies is to upregulate ALDH by dietary means, thereby reducing acetaldehyde toxicity. Methods: Sulforaphane [SF, 1-isothiocyano-4-(methylsulfinyl)butane] derived from its glucosinolate precursor contained in cruciferous vegetables and related inducers of the Keap1/Nrf2/ARE pathway were assessed for their potencies to induce ALDH in murine hepatoma Hepa1c1c7 cells. Inducer potencies for ALDH were compared with those for NQO1, a prototypical cytoprotective enzyme present downstream of the Keap1/Nrf2/ARE pathway. SF (5 or 20 µmol/day) was fed to CD-1 mice for 7 days prior to a single administration of ethanol, and then ALDH induction in organs and pharmacokinetics of acetaldehyde was examined. Results: In addition to SF, other electrophiles, including many Michael reaction acceptors , induce ALDH. Potencies of these agents as inducers parallel their activities in inducing NQO1, and are also dependent on Nrf2. In mice, in vivo , feeding of SF induced tissue ALDH and dramatically increased (doubled) the rate of elimination of acetaldehyde arising from the administration of ethanol. Conclusion: SF and other edible phytochemicals may ameliorate the alcohol intolerance of individuals who are polymorphic with respect to ALDH.

Journal ArticleDOI
23 Oct 2013-PLOS ONE
TL;DR: Human PDAC-derived cells that express high levels of ALDH show CSC features and have a key role in the development of resistance to anticancer therapies, and disulfiram can be used to suppress this therapy-resistant subpopulation.
Abstract: Human pancreatic ductal adenocarcinoma (PDAC) is a cancer with a dismal prognosis. The efficacy of PDAC anticancer therapies is often short-lived; however, there is little information on how this disease entity so frequently gains resistance to treatment. We adopted the concept of cancer stem cells (CSCs) to explain the mechanism of resistance and evaluated the efficacy of a candidate anticancer drug to target these therapy-resistant CSCs. We identified a subpopulation of cells in PDAC with CSC features that were enriched for aldehyde dehydrogenase (ALDH), a marker expressed in certain stem/progenitor cells. These cells were also highly resistant to, and were further enriched by, treatment with gemcitabine. Similarly, surgical specimens from PDAC patients showed that those who had undergone preoperative chemo-radiation therapy more frequently displayed cancers with ALDH strongly positive subpopulations compared with untreated patients. Importantly, these ALDH-high cancer cells were sensitive to disulfiram, an ALDH inhibitor, when tested in vitro. Furthermore, in vivo xenograft studies showed that the effect of disulfiram was additive to that of low-dose gemcitabine when applied in combination. In conclusion, human PDAC-derived cells that express high levels of ALDH show CSC features and have a key role in the development of resistance to anticancer therapies. Disulfiram can be used to suppress this therapy-resistant subpopulation.

Journal ArticleDOI
10 Sep 2013-PLOS ONE
TL;DR: Impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury, and ALDH2 activation can restore this aging-related myocardial ischemic intolerance.
Abstract: Reactive aldehydes can initiate protein oxidative damage which may contribute to heart senescence. Sirtuin 1 (SIRT1) is considered to be a potential interventional target for I/R injury management in the elderly. We hypothesized that aldehyde mediated carbonyl stress increases susceptibility of aged hearts to ischemia/reperfusion (I/R) injury, and elucidate the underlying mechanisms with a focus on SIRT1. Male C57BL/6 young (4-6 mo) and aged (22-24 mo) mice were subjected to myocardial I/R. Cardiac aldehyde dehydrogenase (ALDH2), SIRT1 activity and protein carbonyls were assessed. Our data revealed that aged heart exhibited increased endogenous aldehyde/carbonyl stress due to impaired ALDH2 activity concomitant with blunted SIRT1 activity (P<0.05). Exogenous toxic aldehydes (4-HNE) exposure in isolated cardiomyocyte verified that aldehyde-induced carbonyl modification on SIRT1 impaired SIRT1 activity leading to worse hypoxia/reoxygenation (H/R) injury, which could all be rescued by Alda-1 (ALDH2 activator) (all P<0.05). However, SIRT1 inhibitor blocked the protective effect of Alda-1 on H/R cardiomyocyte. Interestingly, myocardial I/R leads to higher carbonylation but lower activity of SIRT1 in aged hearts than that seen in young hearts (P<0.05). The application of Alda-1 significantly reduced the carbonylation on SIRT1 and markedly improved the tolerance to in vivo I/R injury in aged hearts, but failed to protect Sirt1+/− knockout mice against myocardial I/R injury. This was verified by Alda-1 treatment improved postischemic contractile function recovery in ex vivo perfused aged but not in Sirt1+/− hearts. Thus, aldehyde/carbonyl stress is accelerated in aging heart. These results provide a new insight that impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury. ALDH2 activation can restore this aging-related myocardial ischemic intolerance.

01 Jan 2013
TL;DR: In this paper, the authors adopted the concept of cancer stem cells (CSCs) to explain the mechanism of resistance and evaluated the efficacy of a candidate anticancer drug to target these therapy-resistant CSCs.
Abstract: Human pancreatic ductal adenocarcinoma (PDAC) is a cancer with a dismal prognosis. The efficacy of PDAC anticancer therapies is often short-lived; however, there is little information on how this disease entity so frequently gains resistance to treatment. We adopted the concept of cancer stem cells (CSCs) to explain the mechanism of resistance and evaluated the efficacy of a candidate anticancer drug to target these therapy-resistant CSCs. We identified a subpopulation of cells in PDAC with CSC features that were enriched for aldehyde dehydrogenase (ALDH), a marker expressed in certain stem/progenitor cells. These cells were also highly resistant to, and were further enriched by, treatment with gemcitabine. Similarly, surgical specimens from PDAC patients showed that those who had undergone preoperative chemo-radiation therapy more frequently displayed cancers with ALDH strongly positive subpopulations compared with untreated patients. Importantly, these ALDH-high cancer cells were sensitive to disulfiram, an ALDH inhibitor, when tested in vitro. Furthermore, in vivo xenograft studies showed that the effect of disulfiram was additive to that of low-dose gemcitabine when applied in combination. In conclusion, human PDAC-derived cells that express high levels of ALDH show CSC features and have a key role in the development of resistance to anticancer therapies. Disulfiram can be used to suppress this therapy-resistant subpopulation.

Journal ArticleDOI
TL;DR: In this paper, the authors identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol and constructed gene deletion mutants in this strain and analyzed them for alcohol and acetaldehyde dehydrogenases by zymograms.
Abstract: Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

Journal ArticleDOI
TL;DR: Comparison sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate- and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several AL DH families.

01 Jan 2013
TL;DR: SF and other edible phytochemicals may ameliorate the alcohol intolerance of individuals who are polymorphic with respect to aldehyde dehydrogenase (ALDH).
Abstract: Aims: Many East Asians are highly intolerant to even modest alcohol consumption. These individuals accumulate acetal- dehyde, the primary metabolite of ethanol, because of a genetic polymorphism of aldehyde dehydrogenase (ALDH) that metabolizes acetaldehyde to nontoxic acetate. The aim of these studies is to upregulate ALDH by dietary means, thereby reducing acetaldehyde tox- icity. Methods: Sulforaphane (SF, 1-isothiocyano-4-(methylsulfinyl)butane) derived from its glucosinolate precursor contained in cru- ciferous vegetables and related inducers of the Keap1/Nrf2/ARE pathway were assessed for their potencies to induce ALDH in murine hepatoma Hepa1c1c7 cells. Inducer potencies for ALDH were compared with those for NQO1, a prototypical cytoprotective enzyme present downstream of the Keap1/Nrf2/ARE pathway. SF (5 or 20 µmol/day) was fed to CD-1 mice for 7 days prior to a single adminis- tration of ethanol, and then ALDH induction in organs and pharmacokinetics of acetaldehyde was examined. Results: In addition to SF, other electrophiles, including many Michael reaction acceptors, induce ALDH. Potencies of these agents as inducers parallel their activ- ities in inducing NQO1, and are also dependent on Nrf2. In mice, in vivo, feeding of SF induced tissue ALDH and dramatically increased (doubled) the rate of elimination of acetaldehyde arising from the administration of ethanol. Conclusion: SF and other edible phytochemicals may ameliorate the alcohol intolerance of individuals who are polymorphic with respect to ALDH.

Journal ArticleDOI
14 Feb 2013-Sarcoma
TL;DR: Evidence for interaction between mTOR activity, ALDH activity, and metastatic potential in murine OS cells is provided, suggesting that mTOR and ALDH are therapeutic targets for the treatment and prevention of OS metastasis.
Abstract: Osteosarcoma (OS) is the most common primary malignancy of bone. Mortality is determined by the presence of metastatic disease, but little is known regarding the biochemical events that drive metastases. Two murine OS cell lines, K7M2 and K12, are related but differ significantly in their metastatic potentials: K7M2 is highly metastatic whereas K12 displays much less metastatic potential. Using this experimental system, the mammalian target of rapamycin (mTOR) pathway has been implicated in OS metastasis. We also discovered that aldehyde dehydrogenase (ALDH, a stem cell marker) activity is higher in K7M2 cells than K12 cells. Rapamycin treatment reduces the expression and enzymatic activity of ALDH in K7M2 cells. ALDH inhibition renders these cells more susceptible to apoptotic death when exposed to oxidative stress. Furthermore, rapamycin treatment reduces bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) gene expression and inhibits K7M2 proliferation, migration, and invasion in vitro. Inhibition of ALDH with disulfiram correlated with decreased mTOR expression and activity. In conclusion, we provide evidence for interaction between mTOR activity, ALDH activity, and metastatic potential in murine OS cells. Our work suggests that mTOR and ALDH are therapeutic targets for the treatment and prevention of OS metastasis.

Journal ArticleDOI
TL;DR: This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n- butanol production with no antibiotic support for the introduced genes.
Abstract: Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60 % CO and 40 % H2 in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.

Journal ArticleDOI
TL;DR: This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.

Journal ArticleDOI
TL;DR: This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.
Abstract: Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD+ pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 A resolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.

Journal ArticleDOI
TL;DR: Under low oxygen tension ALD6 and ACS1, instead of ADH1 or ADH2, appear the most reliable indicators of candidal acetaldehyde production from glucose.
Abstract: Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-Coenzyme A (CoA) during fermentation. The aims of our study were: (i) to determine the levels of acetaldehyde produced by Candida albicans in the presence of glucose in low oxygen tension in vitro; (ii) to analyse the expression levels of genes involved in the pyruvate-bypass and acetaldehyde production; and (iii) to analyse whether any correlations exist between acetaldehyde levels, alcohol dehydrogenase enzyme activity or expression of the genes involved in the pyruvate-bypass. Candida albicans strains were isolated from patients with oral squamous cell carcinoma (n�=�5), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients with chronic oral candidosis (n�=�5), and control patients (n�=�5). The acetaldehyde and ethanol production by these isolates grown under low oxygen tension in the presence of glucose was determined, and the expression of alcohol dehydrogenase (ADH1 and ADH2), pyruvate decarboxylase (PDC11), aldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (ACS1 and ACS2) and Adh enzyme activity were analysed. The C.�albicans isolates produced high levels of acetaldehyde from glucose under low oxygen tension. The acetaldehyde levels did not correlate with the expression of ADH1, ADH2 or PDC11 but correlated with the expression of down-stream genes ALD6 and ACS1. Significant differences in the gene expressions were measured between strains isolated from different patient groups. Under low oxygen tension ALD6 and ACS1, instead of ADH1 or ADH2, appear the most reliable indicators of candidal acetaldehyde production from glucose.

Journal ArticleDOI
TL;DR: The development of selective inhibitors for AKR enzymes 1B1 and 1B10, of clinical relevance in diabetes and cancer, granted the investigation of some structure-activity relationships, and the inhibitory properties of some synthetic retinoids were explored.

Journal ArticleDOI
TL;DR: Analysis of the hepatoprotective action of PR in chronic alcohol-induced liver injury in rats indicates that PR contributes to cytoprotection against alcohol- induced liver lesions through improving metabolic function.

Journal ArticleDOI
TL;DR: It is reported that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids, which suggests that its eukaryotic homologs may also be involved in apoccarotenal metabolism, a function that has not been considered so far.
Abstract: Oxidative cleavage of carotenoids and peroxidation of lipids lead to apocarotenals and aliphatic aldehydes called alkanals, which react with vitally important compounds, promoting cytotoxicity. Although many enzymes have been reported to deactivate alkanals by converting them into fatty acids, little is known about the mechanisms used to detoxify apocarotenals or the enzymes acting on them. Cyanobacteria and other photosynthetic organisms must cope with both classes of aldehydes. Here we report that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids. Using a crude lysate of SynAlh1-expressing Escherichia coli cells, we show that SynAlh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate for SynAlh1, making involvement in Synechocystis retinoid metabolism unlikely. The transcript level of SynAlh1 is induced by high light and cold treatment, indicating a role in the stress response, and the corresponding gene is a constituent of a stress-related operon. The assumptions regarding the function of SynAlh are further supported by the surprisingly high homology to human and plant aldehyde dehydrogenase that have been assigned to aldehyde detoxification. SynAlh1 is the first aldehyde dehydrogenase that has been shown to form both apocarotenoic and fatty acids. This dual function suggests that its eukaryotic homologs may also be involved in apocarotenal metabolism, a function that has not been considered so far.

Journal ArticleDOI
TL;DR: Proteomic analyses suggest that liver mitochondria in old rats suffer from a decline in their capacity for energy production, due to decreased expression of OXPHOS complex I/V components and glycative damage to key fatty acid β-oxidation and TCA/urea cycle enzymes.