scispace - formally typeset
Search or ask a question
Topic

Aldehyde dehydrogenase

About: Aldehyde dehydrogenase is a research topic. Over the lifetime, 3365 publications have been published within this topic receiving 107683 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The serendipitous crystal structure determination of unliganded lactaldehyde dehydrogenase from E. coli determined by the technique of multiple isomorphous replacement using anomalous scattering is reported, which represents the first crystal structure of an aldehyde dehydrogenases-product complex.

49 citations

Journal ArticleDOI
TL;DR: Differences in the activities of total ADH, ALDH and class I ADH isoenzyme between cancer liver tissues and healthy hepatocytes might be a factor in ethanol metabolism disorders, which can intensify carcinogenesis.
Abstract: Background/Aims Ethanol consumption is associated with an increased risk of esophageal cancer. The carcinogenic compound is acetaldehyde, the product of ethanol metabolism. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to generation of acetaldehyde. In this study the activity of ADH isoenzymes and ALDH in esophageal cancer were compared with the activity in normal tissue. Methods For measurement of the activity of class I and II ADH isoenzymes and ALDH activity fluorimetric methods were employed. Total ADH activity and activity of class III and IV isoenzymes was measured by the photometric method. Samples were taken from 59 esophageal cancer patients (27 adenocarcinoma, 32 squamous cell cancer). Results The total activity of ADH and activity of class IV ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH showed a tendency toward higher activity in cancer than in normal cells. Differences between the activity of enzymes of drinkers and non-drinkers in both cancer and healthy tissue were not significant. Conclusion Increased ADH IV activity may be a factor intensifying carcinogenesis, because of the increased ability to form acetaldehyde from ethanol.

49 citations

Journal ArticleDOI
TL;DR: Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation.
Abstract: Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation.

49 citations

Journal ArticleDOI
TL;DR: It is concluded that carbon motion is involved in the hydride transfer steps of dehydrogenase reactions, and primary intrinsic deuterium and 13C isotope effects have been determined for liver (LADH) and yeast (Y ADH) alcohol dehydrogenases with benzyl alcohol as substrate.
Abstract: Primary intrinsic deuterium and 13C isotope effects have been determined for liver (LADH) and yeast (YADH) alcohol dehydrogenases with benzyl alcohol as substrate and for yeast aldehyde dehydrogenase (ALDH) with benzaldehyde as substrate. These values have also been determined for LADH as a function of changing nucleotide substrate. As the redox potential of the nucleotide changes from -0.320 V with NAD to -0.258 V with acetylpyridine-NAD, the product of primary and secondary deuterium isotope effects rises from 4 toward 6.5, while the primary 13C isotope effect drops from 1.025 to 1.012, suggesting a trend from a late transition state with NAD to one that is more symmetrical. The values of Dk (again the product of primary and secondary isotope effects) and 13k for YADH with NAD are 7 and 1.023, suggesting for this very slow reaction a more stretched, and thus symmetrical, transition state. With ALDH and NAD, the primary 13C isotope effect on the hydride transfer step lies in the range 1.3-1.6%, and the alpha-secondary deuterium isotope effect on the same step is at least 1.22, but 13C isotope effects on formation of the thiohemiacetal intermediate and on the addition of water to the thio ester intermediate are less than 1%. On the basis of the relatively large 13C isotope effects, we conclude that carbon motion is involved in the hydride transfer steps of dehydrogenase reactions.

49 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
84% related
Receptor
159.3K papers, 8.2M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023260
2022192
202170
202081
201980
201895