scispace - formally typeset
Search or ask a question
Topic

Aldehyde dehydrogenase

About: Aldehyde dehydrogenase is a research topic. Over the lifetime, 3365 publications have been published within this topic receiving 107683 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The stimulation of enzymes' expression, and the activation of the catalytic properties of enzymes responsible for catabolism of endogenous aldehydes could become a perspective direction in increasing the organism resistance to the action of damaging factors during aging.

46 citations

Journal ArticleDOI
TL;DR: GTN-induced ROS inhibit the bioactivation of GTN by ALDH-2 and redox-regulation of this enzyme by oxidative stress and dihydrolipoic acid is discussed to support a new theory for GTN tolerance and GTN- induced endothelial dysfunction.

46 citations

Journal ArticleDOI
10 Sep 2013-PLOS ONE
TL;DR: Impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury, and ALDH2 activation can restore this aging-related myocardial ischemic intolerance.
Abstract: Reactive aldehydes can initiate protein oxidative damage which may contribute to heart senescence. Sirtuin 1 (SIRT1) is considered to be a potential interventional target for I/R injury management in the elderly. We hypothesized that aldehyde mediated carbonyl stress increases susceptibility of aged hearts to ischemia/reperfusion (I/R) injury, and elucidate the underlying mechanisms with a focus on SIRT1. Male C57BL/6 young (4-6 mo) and aged (22-24 mo) mice were subjected to myocardial I/R. Cardiac aldehyde dehydrogenase (ALDH2), SIRT1 activity and protein carbonyls were assessed. Our data revealed that aged heart exhibited increased endogenous aldehyde/carbonyl stress due to impaired ALDH2 activity concomitant with blunted SIRT1 activity (P<0.05). Exogenous toxic aldehydes (4-HNE) exposure in isolated cardiomyocyte verified that aldehyde-induced carbonyl modification on SIRT1 impaired SIRT1 activity leading to worse hypoxia/reoxygenation (H/R) injury, which could all be rescued by Alda-1 (ALDH2 activator) (all P<0.05). However, SIRT1 inhibitor blocked the protective effect of Alda-1 on H/R cardiomyocyte. Interestingly, myocardial I/R leads to higher carbonylation but lower activity of SIRT1 in aged hearts than that seen in young hearts (P<0.05). The application of Alda-1 significantly reduced the carbonylation on SIRT1 and markedly improved the tolerance to in vivo I/R injury in aged hearts, but failed to protect Sirt1+/− knockout mice against myocardial I/R injury. This was verified by Alda-1 treatment improved postischemic contractile function recovery in ex vivo perfused aged but not in Sirt1+/− hearts. Thus, aldehyde/carbonyl stress is accelerated in aging heart. These results provide a new insight that impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury. ALDH2 activation can restore this aging-related myocardial ischemic intolerance.

46 citations

Journal ArticleDOI
TL;DR: Evidence from alternative substrate analysis and product-inhibition studies supports an ordered sequence of substrate binding in which NAD+ is the leading substrate, and the order of substrate addition proposed here differs from that proposed for a yeast aldehyde dehydrogenase previously reported.
Abstract: Data from steady-state kinetic analysis of yeast K+-activated aldehyde dehydrogenase are consistent with a ternary complex mechanism. Evidence from alternative substrate analysis and product-inhibition studies supports an ordered sequence of substrate binding in which NAD+ is the leading substrate. A preincubation requirement for NAD+ for maximum activity is also consistent with the importance of a binary enzyme-NAD+ complex. Dissociation constant for enzyme-NAD+ complex determined kinetically is in reasonable agreement with that determined by direct binding. The order of substrate addition proposed here differs from that proposed for a yeast aldehyde dehydrogenase previously reported. Different methods of purification produced an enzyme that showed similar kinetic characteristics to those reported here.

46 citations

Journal ArticleDOI
TL;DR: It is demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of ac rolein-protein adducts and caspase 3 activation.

46 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
84% related
Receptor
159.3K papers, 8.2M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023260
2022192
202170
202081
201980
201895