scispace - formally typeset
Search or ask a question
Topic

Aldehyde dehydrogenase

About: Aldehyde dehydrogenase is a research topic. Over the lifetime, 3365 publications have been published within this topic receiving 107683 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that either the formation or the breakdown of a covalent intermediate through nucleophilic attack on the carbonyl carbon of the substrate is most probably the rate-limiting step in the dehydrogenase reaction scheme.

158 citations

Journal ArticleDOI
TL;DR: Significant differences of ADH isoenzymes activities between cancer tissues and healthy organs may be a factor intensifying carcinogenesis by the increased ability to acetaldehyde formation from ethanol and disorders in metabolism of some biologically important substances.

157 citations

Journal ArticleDOI
TL;DR: A gene (aad) coding for an aldehyde/alcohol dehydrogenase (AAD) was identified immediately upstream of the previously cloned ctfA of Clostridium acetobutylicum ATCC 824 and sequenced and exhibits considerable amino acid homology over its entire sequence to the trifunctional protein encoded by adhE from Escherichia coli.
Abstract: A gene (aad) coding for an aldehyde/alcohol dehydrogenase (AAD) was identified immediately upstream of the previously cloned ctfA (J. W. Cary, D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett, Appl. Environ. Microbiol. 56:1576-1583, 1990) of Clostridium acetobutylicum ATCC 824 and sequenced. The 2,619-bp aad codes for a 96,517-Da protein. Primer extension analysis identified two transcriptional start sites 83 and 243 bp upstream of the aad start codon. The N-terminal section of AAD shows homology to aldehyde dehydrogenases of bacterial, fungal, mammalian, and plant origin, while the C-terminal section shows homology to alcohol dehydrogenases of bacterial (which includes three clostridial alcohol dehydrogenases) and yeast origin. AAD exhibits considerable amino acid homology (56% identity) over its entire sequence to the trifunctional protein encoded by adhE from Escherichia coli. Expression of aad from a plasmid in C. acetobutylicum showed that AAD, which appears as a approximately 96-kDa band in denaturing protein gels, provides elevated activities of NADH-dependent butanol dehydrogenase, NAD-dependent acetaldehyde dehydrogenase and butyraldehyde dehydrogenase, and a small increase in NADH-dependent ethanol dehydrogenase. A 957-bp open reading frame that could potentially encode a 36,704-Da protein was identified upstream of aad. Images

157 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the functional polymorphisms of ADH, ALDH and CYP2E1 and their metabolic, physiologic and clinical correlations are presented.

157 citations

Journal ArticleDOI
TL;DR: It is speculated that acetaldehyde exerts opposite hedonic effects depending on the localization of its accumulation, which might also be dependent upon its peak blood concentrations and its rate of accumulation, with a narrow range of blood acetaldehyde concentrations being reinforcing.
Abstract: Acetaldehyde, the first product of ethanol metabolism, has been speculated to be involved in many pharmacological and behavioral effects of ethanol. In particular, acetaldehyde has been suggested to contribute to alcohol abuse and alcoholism. In the present paper, we review current data on the role of acetaldehyde and ethanol metabolism in alcohol consumption and abuse. Ethanol metabolism involves several enzymes. Whereas alcohol dehydrogenase metabolizes the bulk of ethanol within the liver, other enzymes, such as cytochrome P4502E1 and catalase, also contributes to the production of acetaldehyde from ethanol oxidation. In turn, acetaldehyde is metabolized by the enzyme aldehyde dehydrogenase. In animal studies, acetaldehyde is mainly reinforcing particularly when injected directly into the brain. In humans, genetic polymorphisms of the enzymes alcohol dehydrogenase and aldehyde dehydrogenase are also associated with alcohol drinking habits and the incidence of alcohol abuse. From these human genetic studies, it has been concluded that blood acetaldehyde accumulation induces unpleasant effects that prevent further alcohol drinking. It is therefore speculated that acetaldehyde exerts opposite hedonic effects depending on the localization of its accumulation. In the periphery, acetaldehyde is primarily aversive, whereas brain acetaldehyde is mainly reinforcing. However, the peripheral effects of acetaldehyde might also be dependent upon its peak blood concentrations and its rate of accumulation, with a narrow range of blood acetaldehyde concentrations being reinforcing.

156 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
84% related
Receptor
159.3K papers, 8.2M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023260
2022192
202170
202081
201980
201895