scispace - formally typeset
Search or ask a question
Topic

Aldehyde dehydrogenase

About: Aldehyde dehydrogenase is a research topic. Over the lifetime, 3365 publications have been published within this topic receiving 107683 citations.


Papers
More filters
Journal ArticleDOI
12 Jul 2012-PLOS ONE
TL;DR: Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and Xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification.
Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that induces a battery of cytoprotective genes in response to oxidative/electrophilic stress. Kelch-like ECH associating protein 1 (Keap1) sequesters Nrf2 in the cytosol. The purpose of this study was to investigate the role of Nrf2 in regulating the mRNA of genes encoding drug metabolizing enzymes and xenobiotic transporters. Microarray analysis was performed in livers of Nrf2-null, wild-type, Keap1-knockdown mice with increased Nrf2 activation, and Keap1-hepatocyte knockout mice with maximum Nrf2 activation. In general, Nrf2 did not have a marked effect on uptake transporters, but the mRNAs of organic anion transporting polypeptide 1a1, sodium taurocholate cotransporting polypeptide, and organic anion transporter 2 were decreased with Nrf2 activation. The effect of Nrf2 on cytochrome P450 (Cyp) genes was minimal, with only Cyp2a5, Cyp2c50, Cyp2c54, and Cyp2g1 increased, and Cyp2u1 decreased with enhanced Nrf2 activation. However, Nrf2 increased mRNA of many other phase-I enzymes, such as aldo-keto reductases, carbonyl reductases, and aldehyde dehydrogenase 1. Many genes involved in phase-II drug metabolism were induced by Nrf2, including glutathione S-transferases, UDP- glucuronosyltransferases, and UDP-glucuronic acid synthesis enzymes. Efflux transporters, such as multidrug resistance-associated proteins, breast cancer resistant protein, as well as ATP-binding cassette g5 and g8 were induced by Nrf2. In conclusion, Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification.

122 citations

Journal ArticleDOI
TL;DR: It is indicated that the presently evaluated variant alleles in the CYP2B6, CyP2C9, CYP3A4, CYp3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1 genes do not explain the interindividual variability in cyclophosphamide and 4-hydroxycyclophosphamate pharmacokinetics and are, probably, not the cause of the observed variability in toxicity.
Abstract: PurposeThe anticancer agent, cyclophosphamide, is metabolized by cytochrome P450 (CYP), glutathione S-transferase (GST) and aldehyde dehydrogenase (ALDH) enzymes. Polymorphisms of these enzymes may affect the pharmacokinetics of cyclophosphamide and thereby its toxicity and efficacy. The purpose of

122 citations

Journal ArticleDOI
TL;DR: By increasing NADH availability, this study demonstrates an important metabolic engineering approach to improve the efficiency of oxidoreduction-coupled bioprocesses.

122 citations

Journal ArticleDOI
TL;DR: Enhanced hepatic levels of glutathione protected in vivo against the damaging effects of AA, and the ferric iron chelator desferoxaminemethanesulfonate prevented AA-induced lipid peroxidation and liver cell damage in vivo.

122 citations

Journal ArticleDOI
TL;DR: This strain was used to show that the products of meta ring fission of the cresols and phenol are metabolized as follows: ortho- and meta-cresol exclusively by a hydrolase; para- cresol entirely by a NAD(+)-dependent aldehyde dehydrogenase; phenol by both a NAD (+)- dependent dehydrogen enzyme and a Hydrolase in the approximate ratio of 5 to 1.
Abstract: Mutant strains of Pseudomonas putida strain U have been obtained which are deficient in enzymes of the degradative pathways of phenol and cresols. Mutant strains deficient in catechol 2, 3-oxygenase accumulated the appropriate catechol derivative from cresols. A mutant strain which would not grow on either phenol or a cresol was shown to be deficient in both 2-hydroxymuconic semialdehyde hydrolase and a nicotinamide adenine dinucleotide, oxidized form, (NAD+)-dependent aldehyde dehydrogenase. When this strain was grown in the presence of phenol or a cresol, the appropriate product of meta fission of these compounds accumulated in the growth medium. A partial revertant of this mutant strain, which was able to grow on ortho- and meta-cresol but not para-cresol, was shown to have regained only the hydrolase activity. This strain was used to show that the products of meta ring fission of the cresols and phenol are metabolized as follows: (i) ortho- and meta-cresol exclusively by a hydrolase; (ii) para-cresol exclusively by a NAD+-dependent aldehyde dehydrogenase; (iii) phenol by both a NAD+-dependent dehydrogenase and a hydrolase in the approximate ratio of 5 to 1. This conclusion is supported by the substrate specificity and enzymatic activity of the hydrolase and NAD+-dependent aldehyde dehydrogenase enzymes of the wild-type strain. The results are discussed in terms of the physiological significance of the pathway. Properties of some of the mutant strains isolated are discussed.

121 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
84% related
Receptor
159.3K papers, 8.2M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023260
2022192
202170
202081
201980
201895