scispace - formally typeset
Search or ask a question
Topic

Aldose

About: Aldose is a research topic. Over the lifetime, 1270 publications have been published within this topic receiving 27197 citations. The topic is also known as: aldoses.


Papers
More filters
Journal ArticleDOI
TL;DR: Derivatives of d-xylose and d-glucose were synthesized and used as substrates of the NAD(P)H-dependent aldehyde reduction catalysed by aldose reductases isolated from the yeasts Candida tenuis, C. intermedia and Cryptococcus flavus and steady-state kinetic analysis showed that they were reduced with up to 3000-fold increased catalytic efficiencies.
Abstract: Derivatives of d-xylose and d-glucose, in which the hydroxy groups at C-5, and C-5 and C-6 were replaced by fluorine, hydrogen and azide, were synthesized and used as substrates of the NAD(P)H-dependent aldehyde reduction catalysed by aldose reductases isolated from the yeasts Candida tenuis, C. intermedia and Cryptococcus flavus. Steady-state kinetic analysis showed that, in comparison with the parent aldoses, the derivatives were reduced with up to 3000-fold increased catalytic efficiencies (k(cat)/K(m)), reflecting apparent substrate binding constants (K(m)) decreased to as little as 1/250 and, for d-glucose derivatives, up to 5.5-fold increased maximum initial rates (k(cat)). The effects on K(m) mirror the relative proportion of free aldehyde that is available in aqueous solution for binding to the binary complex enzyme-NAD(P)H. The effects on k(cat) reflect non-productive binding of the pyranose ring of sugars; this occurs preferentially with the NADPH-dependent enzymes. No transition-state stabilization energy seems to be derived from hydrogen-bonding interactions between enzyme-NAD(P)H and positions C-5 and C-6 of the aldose. In contrast, unfavourable interactions with the C-6 group are used together with non-productive binding to bring about specificity (6-10 kJ/mol) in a series of d-aldoses and to prevent the reaction with poor substrates such as d-glucose. Azide introduced at C-5 or C-6 destabilizes the transition state of reduction of the corresponding hydrogen-substituted aldoses by approx. 4-9 kJ/mol. The total transition state stabilization energy derived from hydrogen bonds between hydroxy groups of the substrate and enzyme-NAD(P)H is similar for all yeast aldose reductases (yALRs), at approx. 12-17 kJ/mol. Three out of four yALRs manage on only hydrophobic enzyme-substrate interactions to achieve optimal k(cat), whereas the NAD(P)H-dependent enzyme from C. intermedia requires additional, probably hydrogen-bonding, interactions with the substrate for efficient turnover.

15 citations

Journal ArticleDOI
TL;DR: Aldoses are epimerized at C-2 by combinations of certain metals (Ni2+, Co2+, Ca2+, and Sr2+) and diamines (N, N,N,N′-trimethylethylenediamine and N, N.N.N′, N′-tetramethylthyleniamine), and a 13C n.m.r.
Abstract: Aldoses are epimerized at C-2 by combinations of certain metals (Ni2+, Co2+, Ca2+, and Sr2+) and diamines (N,N,N′-trimethylethylenediamine and N,N,N′,N′-tetramethylethylenediamine), and a 13C n.m.r. study reveals that a novel rearrangement of the carbon skeleton, the exchange of C-1 and C-2 atoms by inversion of the C-1–C-2 aldose fragment, is involved in this reaction.

15 citations


Network Information
Related Topics (5)
Aryl
95.6K papers, 1.3M citations
86% related
Enantioselective synthesis
58.1K papers, 1.6M citations
86% related
Cycloaddition
39.9K papers, 728.7K citations
85% related
Alkyl
223.5K papers, 2M citations
85% related
Moiety
40K papers, 615K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
20226
20213
20207
20196
201813